
5. The Sieve of Eratosthenes

What is an efficient method to generate all of the primes up to x?
The first observation is that if m < x is composite then it must have a
prime factor p at most

√
x.

So scratch out all multiples of 2, then 3, then 5, until the last integer
remaining up to

√
x. The r initial integers p1, p2, . . . , pr you scratch

out are all prime and any integer remaining up to x is also prime.
To get good estimates for π(x), one can modify this process a lit-

tle bit. The idea is to make a more judicious choice of r. Pick r
such that the first r primes p1, p2, . . . , pr are all less than

√
x. We

are going to choose the optimal value for r at the end. Note that the
remaining primes are never multiples of p1, p2, . . . , pr, that is, the re-
maining primes belong to the set of integers which are not multiples of
p1, p2, . . . , pr.

Let

P = {n ∈ N | 1 < n ≤ x and n is a not a multiple of p1, p2, . . . , pr },

so that P is the set of integers from 2 to x which are not multiples of
p1, p2, . . . , pr. Let A(x, r) be the cardinality of P .

If p is a prime from 1 to n then either p is one of p1, p2, . . . , pr or p
belongs to P . It follows that

π(x) ≤ r + A(x, r).

We want to estimate A(x, r). Let Mi be the set of integers from 1 to
n which are multiples of pi. Let Mij be the set of integers from 1 to n
which are multiples of both pi and pj. As pi and pj are coprime,

Mij = Mi ∩Mj.

Note that

|Mi| = x
x

pi
y and |Mij| = x

x

pipj
y,

and so on. It follows by inclusion-exclusion that

A(x, r) = xxy−
r∑

i=1

x
x

pi
y+

∑
i 6=j≤r

x
x

pipj
y+ · · ·+ (−1)rx

x

p1p2 . . . pr
y.

Suppose that we approximate the RHS by simply ignoring all of the
round downs,

x−
r∑

i=1

x

pi
+
∑
i 6=j≤r

x

pipj
+ · · ·+ (−1)r

x

p1p2 . . . pr
.

1



The worse case scenario for the error is

1 +

(
r

1

)
+

(
r

2

)
+ · · ·+

(
r

r

)
= 2r.

It follows that

π(x) ≤ r + x
r∏

i=1

(
1− 1

pi

)
+ 2r.

The key point in using this formula is to make a judicious choice
of r. We want to choose r relatively small. For this we need a good
estimate of the middle term.

Theorem 5.1. If x ≥ 2 then

∏
p≤x

(
1− 1

p

)
<

1

log x
.

Proof. We compute the product of the reciprocals,

∏
p≤x

1

1− 1
p

=
∏
p≤x

(
1 +

1

p
+

1

p2
+ . . .

)
.

Consider what happens if we expand the RHS. If m is an integer which
is a product of primes less than x then the term 1

m
appears somewhere

in the expansion of this product.
Now any integer m ≤ x is a product of primes less than x and so

∏
p≤x

1

1− 1
p

>
n∑

k=1

1

k

>

∫ pxq
1

du

u

> log x. �

Theorem 5.2. We have

π(x) = O

(
x

log log x

)
.
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Proof.

π(x) ≤ r + x
r∏

i=1

(
1− 1

pi

)
+ 2r as proved above

≤ 2r+1 + x

r∏
i=1

(
1− 1

pi

)
as r ≤ 2r

≤ 2r+1 +
x

log pr
using (5.1)

≤ 2r+1 +
x

log r
as pr ≥ r

≤ 2log x+2 +
x

log log x
take r = plog xq

≤ 4 · 2log x +
x

log log x

= O
(
2log x

)
+

x

log log x

≤ o

(
x

log log x

)
+

x

log log x
as log 2 < 1

= O

(
x

log log x

)
. �

It is interesting to note the strange connection between (5.2) and
(5.1). We use (5.2) in the proof of (5.1). However, the two results have
opposite conclusions.

(5.2) places an upper bound on the number of primes up x; there
cannot be too many. By contrast, (5.1) places lower bounds on the
number of primes up to x; there cannot be too few.

For example:

Lemma 5.3. There are infinitely many n such that pn < n2.
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Proof. Suppose not; then there would be a natural number n0 such
that if n > n0 then pn > n2. In this case

N∏
n=1

(
1− 1

pn

)
= M0

N∏
n=n0

(
1− 1

pn

)

≥M0

N∏
n=n0

(
1− 1

n2

)

= M0

N∏
n=n0

n− 1

n

N∏
n=n0

n+ 1

n

= M0
n0 − 1

N

N + 1

n0

= M0
n0 − 1

n0

N + 1

N

≥ M0

2
.

But this contradicts the fact the product is supposed to go to zero by
(5.1). �
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