
4. Asymptotic analysis

As mentioned before, it is convenient to find lower and upper bounds
for some of the functions which appear in number theory. To this end,
it is expedient to introduce some convenient notation.

Definition 4.1. Let S ⊂ R be unbounded from above. If we are given
two functions f : S −→ R and g : S −→ R, where g is always positive,
then we write f(x) = O(g(x)) if there is a constant M such that

|f(x)|
g(x)

< M,

for all x sufficiently large.
We write f(x) = o(g(x)) if

lim
x→∞

f(x)

g(x)
= 0.

We write f(x) ∼ g(x) if

lim
x→∞

f(x)

g(x)
= 1.

Example 4.2. Suppose that we compare sinx and x.

Both functions are defined for all real numbers. Note that all three
of the following statements are correct:

• sinx = O(x)
• sinx = o(x)
• sinx = O(1).

It is not hard to see that the second statement implies the first and
that the third statement implies the second statement. For the third
statement note that

| sinx|
1

= | sinx| ≤ 1.

In fact f(x) = O(1) is equivalent to the statement that f(x) is bounded
from above and below for x large enough.

We note the following comparisons

• ϕ(n) = O(n).
•
√
x = o(x).

• xk = o(ex).
• logk(x) = o(xα) for any k and any α > 0.
• xxy ∼ x.

Note that we cannot replace O by o in the first statement, since if
n = p is prime, then ϕ(p) = p − 1. We list some simple rules for
manipulating this notation.
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Lemma 4.3.

(1) O(O(g(x))) = O(g(x)).
(2) o(o(g(x))) = o(g(x)).
(3) O(g(x)) +O(g(x)) = O(g(x)).
(4) o(g(x)) + o(g(x)) = o(g(x)).
(5) (O(g(x)))2 = O(g2(x)))
(6) (o(g(x)))2 = o(g2(x)))

Proof. (1) is shorthand notation for the statement that if

f(x) = O(g(x)) and h(x) = O(f(x))

then

h(x) = O(g(x)).

The first statement implies that there are real numbers x0 and M0 such
that if

x > x0 then
|f(x)|
g(x)

< M0.

The second statement implies that there are real numbers x1 and M1

such that if

x > x1 then
|h(x)|
f(x)

< M1.

Suppose that x > max(x0, x1). Then

|h(x)|
g(x)

=
|h(x)|
f(x)

f(x)

g(x)

≤ |h(x)|
f(x)

|f(x)|
g(x)

≤M0M1.

This gives (1).
(2) is similar to (1).
(3) is shorthand notation for the statement that if

f0(x) = O(g(x)) and f1(x) = O(g(x))

then

f0(x) + f1(x) = O(g(x)).

The first and second statement imply that there are real numbers xi
and Mi, i = 0 and 1, such that if

x > xi then
|fi(x)|
g(x)

< Mi.
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Suppose that x > max(x0, x1). Then

|f0(x) + f1(x)|
g(x)

≤ |f0(x)|
g(x)

+
|f1(x)|
g(x)

≤M0 +M1.

This gives (3).
(4) is similar to (3).
(5) is shorthand notation for the statement that if

f(x) = O(g(x))

then

f 2(x) = O(g2(x)).

The first statement implies that there are real numbers x0 and M such
that if

x > x0 then
|f(x)|
g(x)

< M.

It follows that if x > x0 then

|f 2(x)|
g2(x)

=
|f(x)|
g(x)

· |f(x)|
g(x)

≤M ·M
= M2.

This is (5).
(6) is similar to (5). �

Definition-Theorem 4.4. There is a constant γ, called Euler’s con-
stant, such that

n∑
k=1

1

k
= log n+ γ +O

(
1

n

)
.

Proof. Let

αk = log k − log(k − 1)− 1

k
for k ≥ 2

and let

γn =
n∑
k=1

1

k
− log n for n ≥ 1.
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Note that

n∑
k=2

αk =
n∑
k=2

log k − log(k − 1)− 1

k

=
n∑
k=2

log k −
n−1∑
k=1

log k −
n∑
k=2

1

k

= log n− log 1−
n∑
k=2

1

k

= 1 + log n−
n∑
k=1

1

k

= 1− γn.

Thus

1− γn =
n∑
k=2

αk.

Note that ∫ k

k−1

1

x
dx = [log x]kk−1

= log k − log(k − 1)

is the area under the curve y = 1/x over the interval k − 1 ≤ x ≤ k.
On the other hand 1/k is the area over the interval k − 1 ≤ x ≤ k
inside the largest rectangle inscribed between the x-axis and the curve
y = 1/x.

It follows that αk is the difference between these two areas, so that
αk is positive. Note that if we drop these areas down to the region
between x = 0 and x = 1 then all of these areas fit into the unit square
bounded by y = 0 and y = 1.

Thus 0 < 1−γn < 1 is bounded and monotonic increasing. It follows
that 1− γn tends to a limit. Define γ by the formula:

lim
n→∞

(1− γn) = 1− γ.

As each area is less than half of the natural bounding rectangle, in fact

1− γn < 1/2.
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Finally note that the difference

γn − γ = (1− γ)− (1− γn)

=
∞∑

k=n+1

αk

is represented by an area which fits inside a box with one side 1 and
the other side 1/n, so that it is less than 1/n. Thus

γn − γ = O

(
1

n

)
. �

Conjecture 4.5. Euler’s constant γ is irrational.

We can compute as many decimal place of γ as we want; we have

γ ≈ 0.5772156649 . . . .
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