3. Round down and fractional part

Definition 3.1. Let $x \in \mathbb{R}$ be a real number.

The round down of x, denoted $\llcorner x\lrcorner$, is the largest integer smaller than x. The fractional part of x, denoted $\{x\}$, is the difference $x-\llcorner x\lrcorner$.

For example,

$$
\begin{array}{rll}
\llcorner\sqrt{2}\lrcorner=1 & \text { and } & \{\sqrt{2}\}=0.4142135 \ldots \\
\llcorner e\lrcorner=2 & \text { and } & \{e\}=0.71828 \ldots \\
\llcorner\pi\lrcorner=3 & \text { and } & \{\pi\}=0.14159 \ldots \\
\llcorner 9 / 2\lrcorner=4 & \text { and } & \{9 / 2\}=1 / 2 .
\end{array}
$$

The round down satisfies some easy basic properties:
Proposition 3.2. Let x, x_{1} and x_{2} be real numbers and let a and n be integers. Assume that n is a natural number in (5), (8) and (9).
(1) $x=\llcorner x\lrcorner+\{x\}$.
(2) $\llcorner x+n\lrcorner=\llcorner x\lrcorner+n$.
(3)

$$
\llcorner x\lrcorner+\llcorner-x\lrcorner= \begin{cases}0 & \text { if } x \text { is an integer } \\ -1 & \text { otherwise } .\end{cases}
$$

$$
\begin{equation*}
\left\llcorner x_{1}\right\lrcorner+\left\llcorner x_{2}\right\lrcorner \leq\left\llcorner x_{1}+x_{2}\right\lrcorner . \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\left\llcorner\frac{x}{n}\right\lrcorner=\left\llcorner\frac{\llcorner x\lrcorner}{n}\right\lrcorner . \tag{5}
\end{equation*}
$$

(6)

$$
0 \leq\llcorner x\lrcorner-2\left\llcorner\frac{x}{2}\right\lrcorner \leq 1
$$

(7) The cardinality of

$$
\left\{m \in \mathbb{Z} \mid x_{1}<m \leq x_{2}\right\}
$$

is $\left\llcorner x_{2}\right\lrcorner-\left\llcorner x_{1}\right\lrcorner$.
(8) The cardinality of

$$
\{k \in \mathbb{N} \mid k n \leq x\}
$$

is $\left\llcorner\frac{x}{n}\right\lrcorner$.
(9)

$$
n\left\{\frac{a}{n}\right\}
$$

is the residue of a modulo n between 0 and $n-1$.

Proof. (1) is immediate from the definitions. By definition of the round down

$$
\llcorner x\lrcorner \leq x
$$

so that adding n to both sides we get

$$
\llcorner x\lrcorner+n \leq x+n .
$$

Therefore $\llcorner x\lrcorner+n$ is an integer less than $x+n$. As $\llcorner x+n\lrcorner$ is the largest integer less than $x+n$, we have

$$
\llcorner x\lrcorner+n \leq\llcorner x+n\lrcorner .
$$

On the other hand,

$$
\llcorner x+n\lrcorner \leq x+n
$$

so that subtracting n from both sides, we get

$$
\llcorner x+n\lrcorner-n \leq x .
$$

The LHS is an integer less than x so that

$$
\llcorner x+n\lrcorner-n \leq\llcorner x\lrcorner
$$

Adding n to both sides, we get

$$
\llcorner x+n\lrcorner \leq\llcorner x\lrcorner+n .
$$

Since we have an equality both ways, this gives (2).
If x is an integer then so is $-x$ and so $\llcorner x\lrcorner=x$ and $\llcorner-x\lrcorner=-x$. But then

$$
\llcorner x\lrcorner+\llcorner-x\lrcorner=x-x=0 .
$$

Otherwise neither x nor $-x$ is an integer, so that $\llcorner x\lrcorner<x$ and $\llcorner-x\lrcorner<$ $-x$. In particular

$$
\llcorner x\lrcorner+\llcorner-x\lrcorner<x-x=0 .
$$

But $x-\llcorner x\lrcorner<1$ and $-x-\llcorner-x\lrcorner<1$ so that

$$
\begin{aligned}
\llcorner x\lrcorner+\llcorner-x\lrcorner & >(x-1)+(-x-1) \\
& =-2 .
\end{aligned}
$$

Since $\llcorner x\lrcorner+\llcorner-x\lrcorner$ is an integer between -2 and 0 it must be -1 . This is (3).

We have

$$
\left\llcorner x_{1}\right\lrcorner \leq x_{1} \quad \text { and } \quad\left\llcorner x_{2}\right\lrcorner \leq x_{2},
$$

so that

$$
\left\llcorner x_{1}\right\lrcorner+\left\llcorner x_{2}\right\lrcorner \leq x_{1}+x_{2}
$$

As the LHS is an integer, this gives (4).
As

$$
\underset{2}{\llcorner x\lrcorner} \leq x
$$

we have

$$
\frac{\llcorner x\lrcorner}{n} \leq \frac{x}{n},
$$

and so

$$
\left\llcorner\frac{\llcorner x\lrcorner}{n}\right\lrcorner \leq\left\llcorner\frac{x}{n}\right\lrcorner .
$$

On the other hand,

$$
\left\llcorner\frac{x}{n}\right\lrcorner \leq \frac{x}{n} .
$$

Thus

$$
n\left\llcorner\frac{x}{n}\right\lrcorner \leq x .
$$

As the LHS is an integer, it follows that

$$
n\left\llcorner\frac{x}{n}\right\lrcorner \leq\llcorner x\lrcorner,
$$

so that

$$
\left\llcorner\frac{x}{n}\right\lrcorner \leq \frac{\llcorner x\lrcorner}{n} .
$$

As the LHS is an integer, it follows that

$$
\left\llcorner\frac{x}{n}\right\lrcorner \leq\left\llcorner\frac{\llcorner x\lrcorner}{n}\right\lrcorner .
$$

As we have equality both ways this gives (5).
If we apply (5) with $n=2$ we see that

$$
\begin{aligned}
2\left\llcorner\frac{x}{2}\right\lrcorner & =2\left\llcorner\frac{\llcorner x\lrcorner}{2}\right\lrcorner \\
& =2 \frac{\llcorner x\lrcorner}{2}-2\left\{\frac{\llcorner x\lrcorner}{2}\right\} \\
& =\llcorner x\lrcorner-2\left\{\frac{\llcorner x\lrcorner}{2}\right\} .
\end{aligned}
$$

Thus

$$
\llcorner x\lrcorner-2\left\llcorner\frac{x}{2}\right\lrcorner=2\left\{\frac{\llcorner x\lrcorner}{2}\right\} .
$$

The LHS is an integer and the RHS belongs to the interval $[0,2)$. The LHS is either 0 or 1 . This is (6).

Note that we have an equality of the two sets

$$
\left\{m \in \mathbb{Z} \mid x_{1}<m \leq x_{2}\right\}=\left\{m \in \mathbb{Z} \mid\left\llcorner x_{1}\right\lrcorner+1 \leq m \leq\left\llcorner x_{2}\right\lrcorner\right\} .
$$

This gives (7).
Note that we have an equality of the two sets

$$
\{k \in \mathbb{N} \mid k n \leq x\}=\left\{k \in \mathbb{N} \left\lvert\, k \leq \frac{x}{n}\right.\right\} .
$$

This gives (8).
We may write

$$
a=\underset{3}{q n}+r,
$$

where q and r are integers and $0 \leq r \leq n-1$. Note that r is equivalent to a modulo n and r is between 0 and $n-1$. If we divide through by n we get

$$
\frac{a}{n}=q+\frac{r}{n} .
$$

Note that q is an integer less than $\frac{a}{n}$. Thus

$$
q \leq\left\llcorner\frac{a}{n}\right\lrcorner .
$$

On the other hand

$$
\frac{a}{n}=\left\llcorner\frac{a}{n}\right\lrcorner+\left\{\frac{a}{n}\right\} .
$$

Multiplying through by n we get

$$
a=\left\llcorner\frac{a}{n}\right\lrcorner n+\left\{\frac{a}{n}\right\} n .
$$

As the first two terms are integers it follows that the last term is a non-negative integer. Thus

$$
q \geq\left\llcorner\frac{a}{n}\right\lrcorner .
$$

so that

$$
q=\left\llcorner\frac{a}{n}\right\lrcorner \quad \text { and } \quad r=\left\{\frac{a}{n}\right\} n .
$$

This gives (9).
Proposition 3.3. Let p be a prime.
If n is a natural number and $n!=p^{r} m$ where m is coprime to p then

$$
r=\left\llcorner\frac{n}{p}\right\lrcorner+\left\llcorner\frac{n}{p^{2}}\right\lrcorner+\left\llcorner\frac{n}{p^{3}}\right\lrcorner+\ldots
$$

Proof. Note that

$$
r=\sum_{i=1}^{\infty} i r_{i}
$$

where r_{i} is the number of integers from 1 to n divisible by p^{i} but not p^{i+1}. Let s_{i} be the number of integers from 1 to n divisible by p^{i}. Note
that $r_{i}=s_{i}-s_{i+1}$ so that

$$
\begin{aligned}
r & =\sum_{i=1}^{\infty} i r_{i} \\
& =\sum_{i=1}^{\infty} i\left(s_{i}-s_{i+1}\right) \\
& =\sum_{i=1}^{\infty} i s_{i}-\sum_{i=1}^{\infty} i s_{i+1} \\
& =\sum_{i=1}^{\infty} i s_{i}-\sum_{i=1}^{\infty}(i-1) s_{i} \\
& =\sum_{i=1}^{\infty} s_{i}
\end{aligned}
$$

On the other hand, of the numbers from 1 to n, there are

$$
s_{i}=\left\llcorner\frac{n}{p^{i}}\right\lrcorner
$$

numbers divisible by p^{i}.

