3. ROUND DOWN AND FRACTIONAL PART

Definition 3.1. Let x € R be a real number.

The round down of x, denoted Lx ., is the largest integer smaller
than z. The fractional part of x, denoted {x}, is the difference
T — LT

For example,

V2o=1 and  {V2}=0.4142135...
Ley =2 and {e}=0.71828...
Lmo=3  and {m}=0.14159...
L9/2,=4 and {9/2}=1/2.
The round down satisfies some easy basic properties:

Proposition 3.2. Let x, 1 and x5 be real numbers and let a and n be
integers. Assume that n is a natural number in (5), (8) and (9).

(1) z = axa+{z}.

(2) Lx +no=rx1+n.

(3)

0 if x 1s an integer

LTI+ L—T1 =
{—1 otherwise.

(4)

LZ10+ L0 < L2y + 290,

(5)

X LT

(6) N
0<Lxy— 2|_§_| <1.
(7) The cardinality of
{meZlxy,<m<axy}

18 LLod — L.

(8) The cardinality of
{keN|kn<uz}
15 LE .
0 )
n{ " }
1s the residue of a modulo n between 0 and n — 1.
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Proof. (1) is immediate from the definitions. By definition of the round
down
Lra < x

so that adding n to both sides we get
Lz +n < x+n.

Therefore Lx_+n is an integer less than x+n. As Lx+nJ is the largest
integer less than = 4+ n, we have

Lra+n <Lz + no.
On the other hand,
Lr+na<z+4+n

so that subtracting n from both sides, we get
Lr+na—n < x.
The LHS is an integer less than x so that
LT +nao—n < Lx.
Adding n to both sides, we get
Lr +na < Lxa+n.

Since we have an equality both ways, this gives (2).
If x is an integer then so is —z and so Lx1 =z and L—z1 = —x. But
then
Lra+L—rao=x—x =0.
Otherwise neither x nor —x is an integer, so that Lxs < z and L—z1 <
—z. In particular
Lro+L—zao<x—ax=0.

But x —Lziy<1and —x — L—x1 < 1 so that
e+ L—za>(x—1)+ (—x —1)
= —2.
Since Lxa+ L—z1 is an integer between —2 and 0 it must be —1. This
is (3).
We have
Lrya < a4 and LZoa < o,
so that
LT12 4+ LTy < 21 + To.
As the LHS is an integer, this gives (4).
As

Lra < x
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we have

LXL T
— < -,
n n
and so
LT x
L—a < L—_.
n
On the other hand,
z T
L— < —
n n
Thus
n— < T
n

As the LHS is an integer, it follows that

T
ne—a < LT,

n
so that
x LT
L—a < —.
n n
As the LHS is an integer, it follows that
x x
L—a < I_:_I.
n n

As we have equality both ways this gives (5).
If we apply (5) with n = 2 we see that

QLgJ = 2|_‘_;—_‘J
LT LT
=2— - 2{? }
LT
=rxy—2{ - }.
Thus . ™
LTI — 2I_§_J =2{ > }.

The LHS is an integer and the RHS belongs to the interval [0,2). The
LHS is either 0 or 1. This is (6).
Note that we have an equality of the two sets
{meZlry<m<z}={meZ|tria+1<m< Lz}
This gives (7).
Note that we have an equality of the two sets

{kEN]kngx}:{keNMg%}.

This gives (8).
We may write
a=qn—+r,



where ¢ and r are integers and 0 < r < n—1. Note that r is equivalent
to a modulo n and r is between 0 and n — 1. If we divide through by
n we get

a T
n n

Note that g is an integer less than *. Thus

a

qg<L—_.
n

On the other hand
a a

a
ﬁ — LHJ + { ﬁ }
Multiplying through by n we get

a a
a=L—m—+— n.
Lo {n}

As the first two terms are integers it follows that the last term is a
non-negative integer. Thus

so that

This gives (9). O

Proposition 3.3. Let p be a prime.
If n is a natural number and n! = p"m where m is coprime to p then

n n n
T:L—J+L—2J+L—3_I+....
p p p

Proof. Note that

o0

r = g iy,
i=1

where r; is the number of integers from 1 to n divisible by p* but not

piTL. Let s; be the number of integers from 1 to n divisible by p’. Note
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that r; = s; — s;41 so that

On the other hand, of the numbers from 1 to n, there are

n
S; = L_i—J

p
numbers divisible by p'.
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