
3. Round down and fractional part

Definition 3.1. Let x ∈ R be a real number.
The round down of x, denoted xxy, is the largest integer smaller

than x. The fractional part of x, denoted {x }, is the difference
x− xxy.

For example,

x
√

2y = 1 and {
√

2 } = 0.4142135 . . .

xey = 2 and { e } = 0.71828 . . .

xπy = 3 and { π } = 0.14159 . . .

x9/2y = 4 and { 9/2 } = 1/2.

The round down satisfies some easy basic properties:

Proposition 3.2. Let x, x1 and x2 be real numbers and let a and n be
integers. Assume that n is a natural number in (5), (8) and (9).

(1) x = xxy+ {x }.
(2) xx+ ny = xxy+ n.
(3)

xxy+ x−xy =

{
0 if x is an integer

−1 otherwise.

(4)
xx1y+ xx2y ≤ xx1 + x2y.

(5)

x
x

n
y = x

xxy
n
y.

(6)

0 ≤ xxy− 2x
x

2
y ≤ 1.

(7) The cardinality of

{m ∈ Z |x1 < m ≤ x2 }
is xx2y− xx1y.

(8) The cardinality of

{ k ∈ N | kn ≤ x }
is xx

n
y.

(9)

n{ a
n
}

is the residue of a modulo n between 0 and n− 1.
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Proof. (1) is immediate from the definitions. By definition of the round
down

xxy ≤ x

so that adding n to both sides we get

xxy+ n ≤ x+ n.

Therefore xxy+n is an integer less than x+n. As xx+ny is the largest
integer less than x+ n, we have

xxy+ n ≤ xx+ ny.

On the other hand,
xx+ ny ≤ x+ n

so that subtracting n from both sides, we get

xx+ ny− n ≤ x.

The LHS is an integer less than x so that

xx+ ny− n ≤ xxy.
Adding n to both sides, we get

xx+ ny ≤ xxy+ n.

Since we have an equality both ways, this gives (2).
If x is an integer then so is −x and so xxy = x and x−xy = −x. But

then
xxy+ x−xy = x− x = 0.

Otherwise neither x nor −x is an integer, so that xxy < x and x−xy <
−x. In particular

xxy+ x−xy < x− x = 0.

But x− xxy < 1 and −x− x−xy < 1 so that

xxy+ x−xy > (x− 1) + (−x− 1)

= −2.

Since xxy+ x−xy is an integer between −2 and 0 it must be −1. This
is (3).

We have
xx1y ≤ x1 and xx2y ≤ x2,

so that
xx1y+ xx2y ≤ x1 + x2.

As the LHS is an integer, this gives (4).
As

xxy ≤ x
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we have
xxy
n
≤ x

n
,

and so
x
xxy
n
y ≤ xx

n
y.

On the other hand,

x
x

n
y ≤ x

n
.

Thus
nx
x

n
y ≤ x.

As the LHS is an integer, it follows that

nx
x

n
y ≤ xxy,

so that
x
x

n
y ≤ xxy

n
.

As the LHS is an integer, it follows that

x
x

n
y ≤ xxxy

n
y.

As we have equality both ways this gives (5).
If we apply (5) with n = 2 we see that

2x
x

2
y = 2x

xxy
2
y

= 2
xxy
2
− 2{ xxy

2
}

= xxy− 2{ xxy
2
}.

Thus
xxy− 2x

x

2
y = 2{ xxy

2
}.

The LHS is an integer and the RHS belongs to the interval [0, 2). The
LHS is either 0 or 1. This is (6).

Note that we have an equality of the two sets

{m ∈ Z |x1 < m ≤ x2 } = {m ∈ Z | xx1y+ 1 ≤ m ≤ xx2y }.
This gives (7).

Note that we have an equality of the two sets

{ k ∈ N | kn ≤ x } = { k ∈ N | k ≤ x

n
}.

This gives (8).
We may write

a = qn+ r,
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where q and r are integers and 0 ≤ r ≤ n−1. Note that r is equivalent
to a modulo n and r is between 0 and n− 1. If we divide through by
n we get

a

n
= q +

r

n
.

Note that q is an integer less than a
n
. Thus

q ≤ xa
n
y.

On the other hand

a

n
= x

a

n
y+ { a

n
}.

Multiplying through by n we get

a = x
a

n
yn+ { a

n
}n.

As the first two terms are integers it follows that the last term is a
non-negative integer. Thus

q ≥ xa
n
y.

so that

q = x
a

n
y and r = { a

n
}n.

This gives (9). �

Proposition 3.3. Let p be a prime.
If n is a natural number and n! = prm where m is coprime to p then

r = x
n

p
y+ x

n

p2
y+ x

n

p3
y+ . . . .

Proof. Note that

r =
∞∑
i=1

iri,

where ri is the number of integers from 1 to n divisible by pi but not
pi+1. Let si be the number of integers from 1 to n divisible by pi. Note
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that ri = si − si+1 so that

r =
∞∑
i=1

iri

=
∞∑
i=1

i(si − si+1)

=
∞∑
i=1

isi −
∞∑
i=1

isi+1

=
∞∑
i=1

isi −
∞∑
i=1

(i− 1)si

=
∞∑
i=1

si.

On the other hand, of the numbers from 1 to n, there are

si = x
n

pi
y

numbers divisible by pi. �
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