
2. Möbius Inversion

Definition 2.1. Define a function

π : R −→ N
by the rule that π(x) is the number of primes up to x.

Theorem 2.2. If n is a natural number then

π(n) >
log n

2 log 2
.

In particular there are infinitely many primes.

Proof. Let k = π(n).
Consider the square-free integers divisible only by the first k primes

numbers, p1, p2, . . . , pk. For each prime pi, we get to choose whether to
include pi or not, so that we can form 2k square-free natural numbers
divisible only by p1, p2, . . . , pk.

On the other hand, every natural number up to n is uniquely of the
form a perfect square multiplied by a square-free number divisible by
only the first k primes. Now there are at at most

√
n perfect squares

at most n, so there are at most 2k
√
n natural numbers at most n. As

there are n natural numbers less than n, we must have
√
n2π(n) ≥ n.

Dividing both sides by
√
n, we get

2π(n) ≥
√
n.

Taking logs of both sides gives

π(n) log 2 = log 2π(n)

≥ log
√
n

≥ 1

2
log n. �

Note that we could have decided that there were 2k square-free nat-
ural numbers divisible only by the first k primes, by considering how
many square-free natural numbers are divisible by exactly l of the first
k primes, (

k

l

)
and summing these to get(

k

0

)
+

(
k

1

)
+

(
k

2

)
+ · · ·+

(
k

k

)
= 2k.
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Here is a generalisation of this type of argument which is very useful.

Theorem 2.3 (Inclusion-Exclusion). Let A1, A2, . . . , AN be a collection
of N sets. Then

|A1∪A2∪· · ·∪AN | =
N∑
i=1

|Ai|−
∑
i 6=j

|Ai∩Aj|+
∑

#{i,j,k}=3

|Ai∩Aj ∩Ak|

−
∑

#{i,j,k,l}=4

|Ai ∩Aj ∩Ak ∩Al|+ · · ·+ (−1)N+1|A1 ∩A2 ∩ · · · ∩AN |.

Proof. We just need to check that each element of the union is counted
exactly once by the formula on the RHS. Let x ∈ A1 ∪ A2 ∪ · · · ∪ AN .
Suppose that x belongs to Ai1 , Ai2 , . . . Aik , and to no other sets. By
induction on k, we may as well assume that k = N , so that x in fact
belongs to every Ai.

In this case, note that x contributes one to every possible intersec-
tion, since it belongs to every possible intersection of the subsets. So
we just need to check that the alternating sum

N∑
i=1

1−
∑
i 6=j

1 +
∑

#{i,j,k}=3

1−
∑

#{i,j,k,l}=3

1 + · · ·+ (−1)N ,

is one. The first term is N , since there are N numbers between 1 and
N . Put differently there are N subsets with one element. The second
term, up to sign, is just the number of subsets with two elements, which
is (

N

2

)
.

The third term is the number of subsets with three elements and so on.
So we just need to show that

N −
(
N

2

)
+

(
N

3

)
−
(
N

4

)
+ · · ·+ (−1)N+1,

is equal to one. Now consider expanding

0 = (1− 1)N ,

using the binomial theorem. We would get

0 = 1−
(
N

1

)
+

(
N

2

)
−
(
N

3

)
+

(
N

4

)
+ · · ·+ (−1)N .

Moving everything but 1 over to the other side, we get

N −
(
N

2

)
+

(
N

3

)
−
(
N

4

)
+ · · ·+ (−1)N+1 = 1. �
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Definition 2.4. Define a function

µ : N −→ Z

called the Möbius function, by the rule

µ(n) =

{
(−1)ν if n is the product of ν distinct primes

0 otherwise.

Thus µ(1) = 1 = 10 (the product of zero primes), µ(2) = µ(3) = −1
and µ(4) = 0.

Lemma 2.5. The Möbius function µ is multiplicative.

Proof. Suppose that m and n are two coprime natural numbers.
If m is not square-free then neither is mn and in this case

µ(mn) = µ(m)µ(n)

as both sides are zero. By symmetry we are also done if n is not
square-free.

Therefore we may assume that both m and n are square-free. Sup-
pose that m is the product of µ distinct primes and n is the product
of ν distinct primes. In this case mn is the product of µ + ν distinct
primes and we have

µ(m)µ(n) = (−1)µ(−1)ν

= (−1)µ+ν

= µ(mn). �

Proposition 2.6. If

M : N −→ Z,

is the function defined by the rule

M(n) =
∑
d|n

µ(d)

then

M(n) =

{
1 if n = 1

0 if n > 1.

Proof. It is clear that M(1) = µ(1) = 1.
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Otherwise note that M(n) is multiplicative as µ(n) is multiplicative.
Thus we may assume that n is a power of a prime n = pe. In this case

M(pe) =
e∑
i=0

µ(pi)

= µ(1) + µ(p) + µ(p2) + · · ·+ µ(pe)

= 1− 1 + 0 + 0 + · · ·+ 0

= 0. �

Theorem 2.7 (Möbius Inversion). If f : N −→ Z is any function and

F (n) =
∑
d|n

f(d)

then

f(n) =
∑
d|n

µ
(n
d

)
F (d) =

∑
d|n

F
(n
d

)
µ(d) =

∑
d1d2=n

µ(d1)F (d2).

Proof. We have

∑
d1d2=n

µ(d1)F (d2) =
∑

d1d2=n

µ(d1)

∑
d|d2

f(d)


=
∑
d1d|n

µ(d1)f(d)

=
∑
d|n

f(d)

∑
d1|nd

µ(d1)


=
∑
d|n

f(d)M
(n
d

)
= f(n),

since M(n/d) is zero, unless n/d = 1, that is, unless n = d, in which
case it is one. Thus all but the indicated term of the sum is zero. �

Corollary 2.8.

ϕ(n) = n
∑
d|n

µ(d)

d
.

Proof. Note that

n
∑
d|n

µ(d)

d
=
∑
d|n

µ(d)
n

d
.
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Note also it was proved in Math 104A that∑
d|n

ϕ(d) = n

Now apply Möbius inversion. �

Corollary 2.9. If f : N −→ Z is any function and F : N −→ Z is
defined by the rule

F (n) =
∑
d|n

f(d)

then f is multiplicative if and only if F is multiplicative.

Proof. We have already seen that if f is multiplicative then F is mul-
tiplicative.

Now suppose that F is multiplicative. By Möbius inversion we have

f(n) =
∑
d|n

F (d)µ
(n
d

)
.

Let m and n be a coprime natural numbers. We have

f(m)f(n) =

∑
d1|m

F (d1)µ

(
m

d1

)∑
d2|n

F (d2)µ

(
n

d2

)
=

∑
d1|m,d2|n

F (d1)F (d2)µ

(
m

d1

)
µ

(
n

d2

)

=
∑

d1|m,d2|n

F (d1d2)µ

(
mn

d1d2

)
=
∑
d|mn

F (d)µ
(mn
d

)
= f(mn). �
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