2. Möbius Inversion

Definition 2.1. Define a function

$$
\pi: \mathbb{R} \longrightarrow \mathbb{N}
$$

by the rule that $\pi(x)$ is the number of primes up to x.
Theorem 2.2. If n is a natural number then

$$
\pi(n)>\frac{\log n}{2 \log 2}
$$

In particular there are infinitely many primes.
Proof. Let $k=\pi(n)$.
Consider the square-free integers divisible only by the first k primes numbers, $p_{1}, p_{2}, \ldots, p_{k}$. For each prime p_{i}, we get to choose whether to include p_{i} or not, so that we can form 2^{k} square-free natural numbers divisible only by $p_{1}, p_{2}, \ldots, p_{k}$.

On the other hand, every natural number up to n is uniquely of the form a perfect square multiplied by a square-free number divisible by only the first k primes. Now there are at at most \sqrt{n} perfect squares at most n, so there are at most $2^{k} \sqrt{n}$ natural numbers at most n. As there are n natural numbers less than n, we must have

$$
\sqrt{n} 2^{\pi(n)} \geq n
$$

Dividing both sides by \sqrt{n}, we get

$$
2^{\pi(n)} \geq \sqrt{n}
$$

Taking logs of both sides gives

$$
\begin{aligned}
\pi(n) \log 2 & =\log 2^{\pi(n)} \\
& \geq \log \sqrt{n} \\
& \geq \frac{1}{2} \log n .
\end{aligned}
$$

Note that we could have decided that there were 2^{k} square-free natural numbers divisible only by the first k primes, by considering how many square-free natural numbers are divisible by exactly l of the first k primes,

$$
\binom{k}{l}
$$

and summing these to get

$$
\binom{k}{0}+\binom{k}{1}+\binom{k}{2}+\cdots+\binom{k}{k}=2^{k}
$$

Here is a generalisation of this type of argument which is very useful.
Theorem 2.3 (Inclusion-Exclusion). Let $A_{1}, A_{2}, \ldots, A_{N}$ be a collection of N sets. Then

$$
\begin{aligned}
& \left|A_{1} \cup A_{2} \cup \cdots \cup A_{N}\right|=\sum_{i=1}^{N}\left|A_{i}\right|-\sum_{i \neq j}\left|A_{i} \cap A_{j}\right|+\sum_{\#\{i, j, k\}=3}\left|A_{i} \cap A_{j} \cap A_{k}\right| \\
& -\sum_{\#\{i, j, k, l\}=4}\left|A_{i} \cap A_{j} \cap A_{k} \cap A_{l}\right|+\cdots+(-1)^{N+1}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{N}\right| .
\end{aligned}
$$

Proof. We just need to check that each element of the union is counted exactly once by the formula on the RHS. Let $x \in A_{1} \cup A_{2} \cup \cdots \cup A_{N}$. Suppose that x belongs to $A_{i_{1}}, A_{i_{2}}, \ldots A_{i_{k}}$, and to no other sets. By induction on k, we may as well assume that $k=N$, so that x in fact belongs to every A_{i}.

In this case, note that x contributes one to every possible intersection, since it belongs to every possible intersection of the subsets. So we just need to check that the alternating sum

$$
\sum_{i=1}^{N} 1-\sum_{i \neq j} 1+\sum_{\#\{i, j, k\}=3} 1-\sum_{\#\{i, j, k, l\}=3} 1+\cdots+(-1)^{N},
$$

is one. The first term is N, since there are N numbers between 1 and N. Put differently there are N subsets with one element. The second term, up to sign, is just the number of subsets with two elements, which is

$$
\binom{N}{2}
$$

The third term is the number of subsets with three elements and so on. So we just need to show that

$$
N-\binom{N}{2}+\binom{N}{3}-\binom{N}{4}+\cdots+(-1)^{N+1}
$$

is equal to one. Now consider expanding

$$
0=(1-1)^{N}
$$

using the binomial theorem. We would get

$$
0=1-\binom{N}{1}+\binom{N}{2}-\binom{N}{3}+\binom{N}{4}+\cdots+(-1)^{N}
$$

Moving everything but 1 over to the other side, we get

$$
N-\binom{N}{2}+\binom{N}{3}-\binom{N}{4}+\cdots+(-1)^{N+1}=1 .
$$

Definition 2.4. Define a function

$$
\mu: \mathbb{N} \longrightarrow \mathbb{Z}
$$

called the Möbius function, by the rule

$$
\mu(n)= \begin{cases}(-1)^{\nu} & \text { if } n \text { is the product of } \nu \text { distinct primes } \\ 0 & \text { otherwise } .\end{cases}
$$

Thus $\mu(1)=1=1^{0}$ (the product of zero primes), $\mu(2)=\mu(3)=-1$ and $\mu(4)=0$.

Lemma 2.5. The Möbius function μ is multiplicative.
Proof. Suppose that m and n are two coprime natural numbers.
If m is not square-free then neither is $m n$ and in this case

$$
\mu(m n)=\mu(m) \mu(n)
$$

as both sides are zero. By symmetry we are also done if n is not square-free.

Therefore we may assume that both m and n are square-free. Suppose that m is the product of μ distinct primes and n is the product of ν distinct primes. In this case $m n$ is the product of $\mu+\nu$ distinct primes and we have

$$
\begin{aligned}
\mu(m) \mu(n) & =(-1)^{\mu}(-1)^{\nu} \\
& =(-1)^{\mu+\nu} \\
& =\mu(m n) .
\end{aligned}
$$

Proposition 2.6. If

$$
M: \mathbb{N} \longrightarrow \mathbb{Z}
$$

is the function defined by the rule

$$
M(n)=\sum_{d \mid n} \mu(d)
$$

then

$$
M(n)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

Proof. It is clear that $M(1)=\mu(1)=1$.

Otherwise note that $M(n)$ is multiplicative as $\mu(n)$ is multiplicative. Thus we may assume that n is a power of a prime $n=p^{e}$. In this case

$$
\begin{aligned}
M\left(p^{e}\right) & =\sum_{i=0}^{e} \mu\left(p^{i}\right) \\
& =\mu(1)+\mu(p)+\mu\left(p^{2}\right)+\cdots+\mu\left(p^{e}\right) \\
& =1-1+0+0+\cdots+0 \\
& =0
\end{aligned}
$$

Theorem 2.7 (Möbius Inversion). If $f: \mathbb{N} \longrightarrow \mathbb{Z}$ is any function and

$$
F(n)=\sum_{d \mid n} f(d)
$$

then

$$
f(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) F(d)=\sum_{d \mid n} F\left(\frac{n}{d}\right) \mu(d)=\sum_{d_{1} d_{2}=n} \mu\left(d_{1}\right) F\left(d_{2}\right) .
$$

Proof. We have

$$
\begin{aligned}
\sum_{d_{1} d_{2}=n} \mu\left(d_{1}\right) F\left(d_{2}\right) & =\sum_{d_{1} d_{2}=n} \mu\left(d_{1}\right)\left(\sum_{d \mid d_{2}} f(d)\right) \\
& =\sum_{d_{1} d \mid n} \mu\left(d_{1}\right) f(d) \\
& =\sum_{d \mid n} f(d)\left(\sum_{d_{1} \left\lvert\, \frac{n}{d}\right.} \mu\left(d_{1}\right)\right) \\
& =\sum_{d \mid n} f(d) M\left(\frac{n}{d}\right) \\
& =f(n)
\end{aligned}
$$

since $M(n / d)$ is zero, unless $n / d=1$, that is, unless $n=d$, in which case it is one. Thus all but the indicated term of the sum is zero.

Corollary 2.8.

$$
\varphi(n)=n \sum_{d \mid n} \frac{\mu(d)}{d}
$$

Proof. Note that

$$
n \sum_{d \mid n} \frac{\mu(d)}{d}=\sum_{d \mid n} \mu(d) \frac{n}{d}
$$

Note also it was proved in Math 104A that

$$
\sum_{d \mid n} \varphi(d)=n
$$

Now apply Möbius inversion.
Corollary 2.9. If $f: \mathbb{N} \longrightarrow \mathbb{Z}$ is any function and $F: \mathbb{N} \longrightarrow \mathbb{Z}$ is defined by the rule

$$
F(n)=\sum_{d \mid n} f(d)
$$

then f is multiplicative if and only if F is multiplicative.
Proof. We have already seen that if f is multiplicative then F is multiplicative.

Now suppose that F is multiplicative. By Möbius inversion we have

$$
f(n)=\sum_{d \mid n} F(d) \mu\left(\frac{n}{d}\right) .
$$

Let m and n be a coprime natural numbers. We have

$$
\begin{aligned}
f(m) f(n) & =\left(\sum_{d_{1} \mid m} F\left(d_{1}\right) \mu\left(\frac{m}{d_{1}}\right)\right)\left(\sum_{d_{2} \mid n} F\left(d_{2}\right) \mu\left(\frac{n}{d_{2}}\right)\right) \\
& =\sum_{d_{1}\left|m, d_{2}\right| n} F\left(d_{1}\right) F\left(d_{2}\right) \mu\left(\frac{m}{d_{1}}\right) \mu\left(\frac{n}{d_{2}}\right) \\
& =\sum_{d_{1}\left|m, d_{2}\right| n} F\left(d_{1} d_{2}\right) \mu\left(\frac{m n}{d_{1} d_{2}}\right) \\
& =\sum_{d \mid m n} F(d) \mu\left(\frac{m n}{d}\right) \\
& =f(m n) .
\end{aligned}
$$

