
17. This and that

The material in this section is covered in the book “Introduction to
analytic number theory” by Apostol.

Definition 17.1. If p and q are two lattice points then we say that
p and q are (mutually) visible if the only lattice points on the line
segment connecting p and q are p and q themselves.

Lemma 17.2. Two lattice points (a, b) and (c, d) are visible if and only
if a− c and b− d are coprime.

Proof. There is no loss in generality in assuming that (c, d) = (0, 0) is
the origin.

Let d be the greatest common divisor of a and b. We have to show
that (a, b) is invisible from the origin if and only if d > 1.

Suppose that d > 1. Then we may find l and m such that a = dl
and b = dm. Then (l,m) is on the line through the origin and (a, b)
and comes before (a, b), so that (a, b) is not visible from the origin.

Now suppose that (l,m) a lattice point on the line between the origin
and (a, b). Then there is a real number t ∈ (0, 1) such that (l,m) =
t(a, b). As l and m are integers, it follows that t is a rational number.
Suppose that t = λ/µ with (λ, µ) = 1. As t < 1 it follows that µ > 1.

It follows that

λa = µl and λb = µm.

Thus µ divides both a and b, so that d > 1. �

Note that there are infinitely many points which are visible from the
origin. It is natural to wonder about their distribution. Consider the
square region centred around the origin,

|x| ≤ r and |y| ≤ r.

Let N(r) be the number of lattice points in this square and let N ′(r)
be the number of visible lattice points in this square. The quotient

N ′(r)

N(r)

is the ratio of visible lattice points to total number of lattice points
inside the square. The limit as r goes to infinity is called the density
of lattice points visible from the origin.

Theorem 17.3. The set of lattice points visible from the origin has
density

6

π2
.
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Proof. We have to prove that

lim
r→∞

N ′(r)

N(r)
=

6

π2
.

First note that the eight closest points to the origin are all visible:

(±1, 0) (0,±1) and (±1,±1).

Otherwise we just have to count the number of visible points in the
region

{ (x, y) ∈ N2 | 2 ≤ x ≤ r, 1 ≤ y ≤ x }
and multiply by 8. Thus

N ′(r) = 8 + 8
∑

2≤n≤r

∑
1≤m<n
(m,n)=1

1

= 8 + 8
∑

2≤n≤r

ϕ(n).

Using our knowledge of the average value of ϕ, this gives

N ′(r) =
4r2

ζ(2)
+O(r log r).

On the other hand, the total number of lattice points in the square is

N(r) = 4
∑
n≤r

∑
m≤r

1

= 4xryxry

= 4r2 +O(r).

Therefore

lim
r→∞

N ′(r)

N(r)
=

4r2

ζ(2)
+O(r log r)

4r2 +O(r)

=

4
ζ(2)

+O(log r/r)

4 +O(1/r)

=
1

ζ(2)

=
6

π2
. �

One way to state (17.3) is to say that a lattice point chosen at random
has probability 6/π2 of being visible. In light of (17.2), this is the same
as the probability two integers chosen at random are coprime.
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We have already seen that dealing with the difference between x and
its round down is one of the key technical parts of analytic number
theory. There are a couple of general results that state that sometimes
it is automatic we can interchange the two.

Theorem 17.4. Let

a1, a2, . . .

be a sequence of non-negative reals. Suppose that∑
n≤x

anx
x

n
y = x log x+O(x) for all x ≥ 1.

Then

(1) For x ≥ 1 we have∑
n≤x

an
n

= log x+O(1).

(2) There is a constant B > 0 such that∑
n≤x

an ≤ Bx

for all x ≥ 1.
(3) There is a constant A > 0 and an x0 such that∑

n≤x

an ≥ Ax

for all x ≥ x0.

Proof. We define two auxiliary functions,

P (x) =
∑
n≤x

an and Q(x) =
∑
n≤x

anx
x

n
y.

We first prove (2).

Claim 17.5.

P (x)− P
(x

2

)
≤ Q(x)− 2Q

(x
2

)
.

Proof of (17.5). We have

Q(x)− 2Q
(x

2

)
=
∑
n≤x

x
x

n
yan − 2

∑
n≤x/2

x
x

2n
yan

=
∑
n≤x/2

(
x
x

n
y− 2x

x

2n
y
)
an +

∑
x/2<n≤x

x
x

n
yan.
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As x2yy− 2xyy is either 0 or 1, the first sum is non-negative, so that

Q(x)− 2Q
(x

2

)
≥

∑
x/2<n≤x

x
x

n
yan

=
∑

x/2<n≤x

an

= P (x)− P
(x

2

)
. �

By assumption

Q(x)− 2Q
(x

2

)
= x log x+O(x)− 2

(x
2

log
x

2
+O(x)

)
= O(x).

Thus (17.5) implies that

P (x)− P
(x

2

)
= O(x).

Hence there is a constant K > 0 such that

P (x)− P
(x

2

)
≤ Kx,

for all x ≥ 1. Replacing x by x/2 and by x/4, etc, we get

P
(x

2

)
− P

(x
4

)
≤ K

x

2
,

P
(x

4

)
− P

(x
8

)
≤ K

x

4
,

and so on. Note that

P
( x

2n

)
= 0

when 2n > x. Adding all of these inequalities together, we get

P (x) ≤ Kx

(
1 +

1

2
+

1

4
+

1

8
+ . . .

)
= 2Kx.

This establishes (2), with B = 2K.
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We now turn to (1). We have

Q(x) =
∑
n≤x

x
x

n
yan

=
∑
n≤x

(x
n

+O(1)
)
an

= x
∑
n≤x

an
n

+O

(∑
n≤x

an

)
= x

∑
n≤x

an
n

+O(x).

Thus ∑
n≤x

an
n

=
1

x
Q(x) +O(1)

= log x+O(1).

This is (1).
We now prove (3). Let

A(x) =
∑
n≤x

an
n
.

Then (1) says that

A(x) = log x+R(x),

where R(x) is the error term. As R(x) = O(x) we have R(x) ≤ Mx
for some M > 0.

Pick 0 < α < 1 (we will be more precise about α later) and consider

A(x)− A(αx) =
∑
n≤x

an
n
−
∑
n≤αx

an
n

=
∑

αx<n≤x

an
n
.

If x ≥ 1 and αx ≥ 1 then we have

A(x)− A(αx) = log x+R(x)− (logαx+R(αx))

= − logα +R(x)−R(αx)

≥ − logα− |R(x)| − |R(αx)|
≥ − logα− 2M.

Now pick α such that − logα− 2M = 1. This implies that

logα = −2M − 1 so that α = e−2M−1.
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Note that 0 < α < 1, as required. With this choice of α we have the
inequality

A(x)− A(αx) ≥ 1 if x ≥ 1

α
.

On the other hand

A(x)− A(αx) =
∑

αx<n≤x

an
n

≤ 1

αx

∑
n≤x

an

=
P (x)

αx
.

Therefore
P (x)

αx
≥ 1 if x ≥ 1

α
.

Thus

P (x) ≥ αx if x ≥ 1

α
,

which is (3) with A = α and x0 = 1
α

. �
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