
16. Bernoulli numbers

The material in this section is covered in the books “An introduction
to the theory of numbers” by Hardy and Wright and “A course in
number theory” by Rose.

Definition 16.1. The sequence of rational numbers

B0, B1, . . . ,

called the Bernoulli numbers are defined using the power series ex-
pansion

z

ez − 1
=
∞∑
n=0

Bn
zn

n!

which is valid for |z| < 2π.

Lemma 16.2. The Bernoulli numbers satisfy the recursion B0 = 1
and

(m+ 1)Bm = −
m−1∑
j=0

(
m+ 1

j

)
Bj.

Proof. If we apply L’Hôpital then we see that

B0 = lim
z→0

z

ez − 1

= lim
z→0

1

ez

= 1.

On the other hand, if we multiply

z

ez − 1
=
∞∑
n=0

Bn
zn

n!

by ez − 1, then we get

z =
∞∑

m=1

zm

m!

∞∑
n=0

Bn
zn

n!

=
∞∑

m=1,n=0

Bn
zm+n

m!n!

=
∞∑
k=0

∑
m>0

k+1=m+n

Bn
zk+1

m!n!
.
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Once again this gives B0 = 1 and equating coefficients of k + 1 =
m+ n we see that

1

(k + 1)!

k∑
j=0

(
k + 1

j

)
Bj = 0. �

Using the recursive definition we can compute the first few terms

2B1 = −1

3B2 = −3B1 − 1

4B3 = −6B2 − 4B1 − 1,

so that

B1 = −1

2
B2 =

1

6
B3 = 0 B4 = − 1

30
B5 = 0 B6 =

1

42
. . . .

Note after B1 the odd terms are zero and the even terms alternate.

Lemma 16.3. B2n+1 = 0 for n > 0.

Proof. As

B2 = −1

2
.

we have

1 +
∞∑
n=2

Bn
zn

n!
=

z

ez − 1
+
z

2

=
z(ez + 1)

2(ez − 1)
.

Now use the fact that the last function is invariant under replacing
z by −z, so that it is even. �

Bernoulli introduced his numbers because of

Proposition 16.4. If k is a natural number then

1k + 2k + · · ·+ (n− 1)k =
k∑

r=0

1

k + 1− r

(
k

r

)
nk+1−rBr.

Proof. The LHS is the coefficient of zk+1 in

k!z(1 + ez + e2z + · · ·+ e(n−1)z) = k!z
1− enz

1− ez

= k!
z

ez − 1
(enz − 1)

= k!

(
B0 +

B1

1!
z + · · ·+ Bn

n!
zn + . . .

)(
nz +

n2z2

2
+ . . .

)
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and the result follows if we expand the RHS and extract the coefficient
of zk+1. �

Theorem 16.5 (Euler). If n is a natural number then

2(2n)!ζ(2n) = (−1)n+1(2π)2nB2n.

Proof. Following Euler we will assume that the sine function behaves
just like a polynomial, which is to say that the sine function is the
product of the linear factors, one for each root up to a constant factor:

sin z = z

∞∏
n=1

(
1− z

nπ

) ∞∏
n=1

(
1 +

z

nπ

)
= z

∞∏
n=1

(
1− z2

n2π2

)
.

(in fact this is valid but needs some additional justification). If we take
the logarithmic derivative of both sides then we get

cot z =
1

z
− 2

∞∑
n=1

z

n2π2 − z2
.

Realising each term in the product as a geometric series and expand-
ing we get

z cot z = 1− 2
∞∑
n=1

z2

n2π2 − z2

= 1− 2
∞∑

m=1

∞∑
n=1

( z

nπ

)2m
= 1− 2

∞∑
m=1

( z
π

)2m ∞∑
n=1

1

n2m

= 1− 2
∞∑

m=1

ζ(2m)
( z
π

)2m
.

As

eiz = cos z + i sin z

e−iz = cos z − i sin z,

it follows that

cos z =
1

2
(eiz + e−iz) and sin z =

1

2i
(eiz − e−iz).
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Therefore

cot z = i
(eiz + e−iz)

(eiz − e−iz)
.

It follows that

z cot z = iz
(eiz + e−iz)

(eiz − e−iz)

= iz
(e2iz + 1)

(e2iz − 1)

= iz +
2iz

(e2iz − 1)

= 1 +
∞∑

m=2

Bm
(2iz)m

m!
.

Equating coefficients of z2m, m > 0, we get

−2
ζ(2m)

π2m
= (−1)m22m B2m

(2m)!
. �

Corollary 16.6.

(1) If m > 0 then
(−1)m+1B2m > 0.

(2)

|B2m| > 2
(m
πe

)2m
.

Proof. (1) is immediate from (16.5) and the fact that ζ(2m) > 0.
(2) follows as

en >
nn

n!
. �

Corollary 16.7.

ζ(2) =
π2

6
.

Proof.

ζ(2) = 2π2B2

2!

=
π2

6
. �

In fact

ζ(4) =
π4

90
ζ(6) =

π6

945
and so on.
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No simple expression is known for the values ζ(2m + 1) of ζ(s) at
the odd natural numbers. Recall the functional equation

ζ(s) = 2sπs−1 sin(
πs

2
)Γ(1− s)ζ(1− s).

Here Γ(s) is the function

Γ(z) =

∫ ∞
0

xz−1e−x dx.

One can show that
Γ(z + 1) = zΓ(z)

so that Γ(n) = (n− 1)!.
It follows that ζ(−2n) = 0, for n > 0 and

ζ(1− 2n) = 21−2nπ−2nζ(2n)Γ(2n) sin
(π

2
− nπ

)
= 21−2nπ−2n(−1)n−1

22nπ2n

2(2n)!
B2n(2n− 1)!(−1)n

= −B2n

2
.
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