
15. Bruns Theorem

Definition 15.1. Primes p and p < q are called twin primes if
q = p+ 2.
π2(x) is the number of pairs of twin primes up to x.

Conjecture 15.2. There are infinitely many twin primes.

Theorem 15.3.

π2(x)� P (x) =
x(log log x)2

log2 x
.

In particular, the sum of the reciprocals of all twin primes(
1

3
+

1

5

)
+

(
1

5
+

1

7

)
+

(
1

11
+

1

13

)
+ . . .

is convergent.

(15.3) indicates why the twin prime conjecture is so hard. Indeed,
even if there are infinitely many twin primes the sum of the reciprocals
converges and so we cannot prove the existence of infinitely many twin
primes a la Dirichlet.

Proof of (15.3). The last statement follows from the first by an easy
application of the partial summation formula.

Consider integers of the form an = n(n + 2), 1 ≤ n ≤ x. Remove
those divisible by a prime ≤ y, for some integer y ≤

√
x. Let A(x, y)

denote the number of remaining an. We have

π2(x) ≤ π(y) + A(x, y).

Our goal is to show that A(x, y) � P (x) for some y = y(x) such
that π(y)� P (x).

Put

R =
∏
p≤y

p.

We calculate using inclusion-exclusion

A(x, y) = xxy−
∑
p|R

∑
n≤x,p|an

1 +
∑

p1<p2,p1p2|R

∑
n≤x,p1p2|an

1− . . .

= S0 − S1 + S2 − . . . .

One possibility is to proceed as we did in Lecture 5. However this
introduces error terms which are too large. We introduce a variation
on this theme:
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Claim 15.4. There is an inequality

A(x, y) ≤ S0 − S1 + S2 − · · ·+ S2k,

which is valid for every even index 0 < 2k ≤ π(y).

Proof of (15.4). Suppose that an is divisible by exactly m prime factors
of R. If m = 0 then an is counted once on the RHS and this is correct.

If m > 0 it is counted

C(an) = 1−
(
m

1

)
+

(
m

2

)
− · · ·+

(
m

2k

)
times on the RHS and not at all on the LHS and so we just need to
check that C(an) ≥ 0.

There are three cases. If 2k ≤ 1/2(m+ 1) then we use the fact that
the binomial coefficients (

m

l

)
increase until the middle term (or pair of middle terms):

C(an) = 1 +

{(
m

2

)
−
(
m

1

)}
+

{(
m

4

)
−
(
m

3

)}
+ · · · > 0.

If 2k ≥ m then
C(an) = (1− 1)m = 0.

Finally if 1/2(m+ 1) < 2k < m then we use the fact that the binomial
coefficients decrease after the middle term:

C(an) = (1− 1)n −
{
−
(

m

2k + 1

)
+

(
m

2k + 2

)
− . . .

}
=

{(
m

2k + 1

)
−
(

m

2k + 2

)}
+ . . .

> 0. �

Now we have (15.4) we still have to give a good approximation of
the individual terms of the sum. For this we need to estimate the inner
sums in the double summation for Sm,

Td =
∑

n≤x,d|an

1.

Note that
d = p1p2 . . . pl|R,

and µ(d) 6= 0.
First suppose that d is odd. Then n(n + 2) ≡ 0 mod d if and only

if there is a factorisation d = d1d2 such that

n ≡ 0 mod d1 and n+ 2 ≡ 0 mod d2.
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Claim 15.5. n is determined, modulo d, by the factorisation.

Proof of (15.5). Suppose also that

n ≡ 0 mod e1 and n+ 2 ≡ 0 mod e2,

where d = e1e2.
It follows that the equations

x ≡ 2 mod d1

x ≡ 0 mod d2

x ≡ 2 mod e1

x ≡ 0 mod e2

have a simultaneous solution, x = n + 2. Then by a result in 104A
(concerning simultaneous solutions to systems of linear congruences)
we must have

(d1, e2)|2 and (d2, e1)|2.
As d is odd this implies that both d1 and e2, and d2 and e1 are coprime.
As d1 divides d = d1d2 it divides the product e1e2 = d. As d1 is coprime
to e2, d1 divides e1. By symmetry, it follows that d1 = e1 and d2 = e2,
so that the factorisation is unique. �

It follows that there are exactly τ(d) solutions, modulo d, of n(n +
2) ≡ 0 mod d. Hence the number of n ≤ x satisfying the congruence
is

Td = x
x

d
yτ(d) + θ1τ(d) =

x

d
τ(d) + θτ(d)

where 0 ≤ θ1 ≤ 1 so that |θ| ≤ 1.
Now suppose that d is even. Then n = 2m is even. In this case we

just have to count the number of m ≤ 1
2
x such that

m(m+ 1) ≡ 0 mod
1

2
d.

By the same argument,

Td =
x/2

d/2
τ(d/2) + θτ(d/2),

where |θ| ≤ 1. If we define an auxiliary function

τ ′(d) =

{
τ(d) if d is odd

τ(d/2) if d is even

then we see that

Td =
x

d
τ ′(d) + θτ ′(d) where |θ| ≤ 1.
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It follows that

A(x, y) ≤ x

1−
∑
p|R

τ ′(p)

p
+
∑
p1p2|R

τ ′(p1p2)

p1p2
+ · · ·+

∑
p1p2...p2k|R

τ ′(p1p2 . . . p2k)

p1p2 . . . p2k


+

1 +
∑
p|R

τ ′(p) +
∑
p1p2|R

τ ′(p1p2) + · · ·+
∑

p1p2...p2k|R

τ ′(p1p2 . . . p2k)

 .

We adopt the convention that the sums run over increasing primes,
p1 < p2 < . . . . If we fix l then∑

p1p2...pl|R

τ ′(p1p2 . . . pl) ≤ 2l
(
π(y)

l

)

= 2l
π(y)(π(y)− 1) . . . (π(y)− l + 1)

l!

= 2l
πl(y)

l!
.

Thus the second term above, the error term, is at most∑
p|R

τ ′(p) +
∑
p1p2|R

τ ′(p1p2) + · · ·+
∑

p1p2...p2k|R

τ ′(p1p2 . . . p2k) ≤
2k∑
l=1

πl(y)
2l

l!

< π2k(y)
2k∑
l=1

2l

l!

< π2k(y)e2.

Now we turn to estimating the main term, the term involving x. As
τ ′(n) is multiplicative if we multiply out∏

p|R

(
1− τ ′(p)

p

)
=

1

2

∏
p|R,p>2

(
1− 2

p

)
,

then we get the coefficient of x if we include

Vk = −
∑

p1p2...p2k+1|R

τ ′(p1p2 . . . p2k+1)

p1p2 . . . p2k+1

+
∑

p1p2...p2k+2|R

τ ′(p1p2 . . . p2k+2)

p1p2 . . . p2k+2

+. . . .

Thus

A(x, y)� 1

2

∏
p|R,p>2

(
1− 2

p

)
+ π2k(y) + x|Vk|.
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Claim 15.6. There is a constant c ≥ 0 such that

|Vk| <
∑
l>2k

(
2e log log y + ec

l

)l
.

Proof of (15.6). Note that for l ≤ π(y) we have∑
p1p2...pl|R

τ ′(p1p2 . . . pl)

p1p2 . . . pl
≤

∑
p1p2...pl|R

2l

p1p2 . . . pl

≤ 1

l!

(∑
p≤y

2

p

)l

.

To see the last inequality, note that if we expand the multinomial

(t1 + t2 + · · ·+ ts)
l

each of the (
s

l

)
products th1th2 . . . thl ,

1 ≤ h1 < h2 < · · · < thl ≤ s, occurs with coefficient l! (once can also
prove the inequality directly by induction).

Therefore, by (8.2), we have

|Vk| <
∑

2k≤l≤π(y)

1

l!

(∑
p≤y

2

p

)l

<
∑

2k≤l≤π(y)

1

l!
(2 log log y + c)l ,

for some c > 0.
As

el =
∞∑
u=0

lu

u!

>
ll

l!
,

it follows that

l! >

(
l

e

)l
.

Putting all of this together, we get

|Vk| <
∑
l>2k

(
2e log log y + ec

l

)l
. �
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Let
k = x6 log log yy

If y is sufficiently large then

k > 2e log log y + ec,

and then

|Vk| <
∑
l>2k

2−l

= 2−2k

< 2−12 log log y

< (log y)−8.

On the other hand if we use (5.1) then we get∏
2<p≤y

(
1− 2

p

)
=
∏

2<p≤y

{(
1− 1

p

)2

− 1

p2

}

<
∏

2<p≤y

(
1− 1

p

)2

� 1

log2 y
.

Putting all of this together we get

π2(X)� x

log2 y
+ π2k(y) +

x

log8 y

� x

log2 y
+

(
y

log y

)2k

.

Finally, if we put
y = x1/(12 log log x)

then by (7.1) we have

π2(x)� x(log log x)2

log2 x
+

(
x1/12 log log x

log x/12 log log x

)12 log log x

� x(log log x)2

log2 x
. �
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