
14. Average order of magnitude

Another way to describe a function is to consider its average order,
that is, the quantity

1

n

n∑
m=1

f(m).

Taking the average tends to smooth out the irregularities and it is quite
often possible to approximate the average quite accurately.

The following is an example of how to switch the order of summation,
even if it does not often give good estimates.

Proposition 14.1. If

F (m) =
∑
d|n

f(d)

then
n∑

m=1

F (m) =
n∑

m=1

x
n

m
yf(m).

Proof. By definition of F (m), we have
n∑

m=1

F (m) =
n∑

m=1

∑
d|m

f(d).

For this order of summation we associate to every value of m, 1 ≤ m ≤
n, all its divisors d. Instead to each value of d, 1 ≤ d ≤ n, one can
associate all its multiples kd, 1 ≤ kd ≤ n, so that k takes any value up
to xn/dy. Thus

n∑
m=1

F (m) =
n∑
d=1

xn/dy∑
k=1

f(d)

=
n∑
d=1

f(d)

xn/dy∑
k=1

1

=
n∑
d=1

x
n

d
yf(d). �

If one approximates xn/my by n/m = O(1) one gets
n∑

m=1

τ(m) = n log n+O(n) and
n∑

m=1

σ(m) = O(n2).

This is not a particularly good estimate and one can do better than
this:
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Theorem 14.2.
n∑

m=1

τ(m) = n log n+ (2γ − 1)n+O(n1/2),

where γ is Euler’s constant.

Proof. By (14.1) we have

n∑
m=1

τ(m) =
n∑

m=1

x
n

m
y.

Geometrically, the sum on the RHS is the number of lattice points
(x, y) (that is, points such that x and y are integers) where x and y are
natural numbers, on or below the hyperbola xy = n, since if we fix x
the number of 1 ≤ y ≤ n/x is precisely xn/xy.

By symmetry the number of lattice points (x, y) with x > 0, y > 0
and xy ≤ n is equal to twice the number of lattice points x > 0, y > x
and xy ≤ n plus the number of lattice points x > 0, x = y and xy ≤ n.

Hence

n∑
m=1

τ(m) = 2

 √
n∑

x=1

x
n

x
y− x

+ x
√
ny

= 2n

 √
n∑

x=1

1

x

+O(
√
n)− 2

x
√
ny(x
√
ny+ 1)

2

= 2n(log(
√
n) + γ +O(1/

√
n))− n+O(

√
n)

= n log n+ (2γ − 1)n+O(
√
n). �

One can actually improve the error term O(
√
n). It is known that

it can be improved to O( 3
√
n) but not to O( 4

√
n). Actually it is con-

jectured that the error is always smaller than O(x1/4+ε) for any ε > 0.
The problem of finding the best estimate is called the Dirichlet divisor
problem.

The problem of estimating the number of lattice points inside the
circle x2 + y2 ≤ n is very similar and was considered by Gauss; it is
called the circle problem. The number of such points is πn + O(n1/2)
and one would like to improve the error as in the Dirichlet divisor
problem.

Note the difference between estimating an upper bound for the τ -
function versus approximating its average value. Even though it always
beats any power of the logarithm, (13.1), on average it is log n.
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We now turn to estimating the average value of the ϕ-function. We
will need:

Lemma 14.3. For s > 1

1

ζ(s)
=
∞∑
n=1

µ(n)

ns
.

Proof. Both the series above and the series for the zeta function con-
verge absolutely for s > 1, so that we are free to multiply the series
together and rearrange the sum in any convenient order.

We have
∞∑
m=1

1

ms

∞∑
n=1

µ(n)

ns
=

∞∑
m,n=1

µ(n)

(mn)s

=
∞∑
t=1

1

ts

∑
d|t

µ(d)

=
∞∑
t=1

1

ts
M(t)

= 1. �

We will also need an upper bound for ζ(2). In fact

ζ(2) =
π2

6
.

It is easy to see that ζ(2) < 2 as

ζ(2) < 1 +

∫ ∞
1

dt

t2

= 2.

Theorem 14.4.
n∑

m=1

ϕ(m) =
3n2

π2
+O(n log n).

Proof. Recall that

ϕ(m) = m
∑
d|m

µ(d)

d
.

On the other hand

xxy2 = x2 +O(x) and µ(m) = O(1).
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Therefore
n∑

m=1

ϕ(m) =
n∑

m=1

m
∑
d|m

µ(d)

d

=
∑

d1d2≤n

d2µ(d1)

=
n∑

d1=1

µ(d1)

n/d∑
d2=1

d2

=
n∑
d=1

µ(d)
xn/dy2 + xn/dy

2

=
1

2

n∑
d=1

µ(d)
n2

d2
+O

(
n∑
d=1

n

d

)

=
n2

2

(
∞∑
d=1

µ(d)

d2
−

∞∑
d=n+1

µ(d)

d2

)
+O(n log n)

=
n2

2

1

ζ(2)
+O

(
n2

∞∑
d=n+1

1

d2

)
+O(n log n)

=
3n2

π2
+O(n) +O(n log n)

=
3n2

π2
+O(n log n). �

Since
n∑

m=1

m ∼ 1

2
n2

one might say that the average value of ϕ(n) is

6n

π2
≈ 0.608n.
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