
13. Orders of magnitude

The quantity π(x) is relatively easy to approximate with smooth
functions. Estimating some of the other quantities which appear in
number theory is not so straightforward, as they jump up and down
with small changes in n.

Consider τ(n), the number of divisors of n. We expect this function
to grow much slower than n, τ(n) = o(n). On the one hand, infinitely
often τ(n) is equal to 2, when n is prime and on the other hand, τ(n)
is unbounded from above.

If we plot the points (n, τ(n)) in the plane R2 note that there is a
unique polygonal path with the following properties:

(1) the function y = T (x) whose graph is the polygonal path is
piecewise linear,

(2) every point (n, τ(n)) lies below the graph, and
(3) T is convex.

One possible goal is then to give asymptotics for the function y =
T (x).

Theorem 13.1.

(1) The relation τ(n) � logh(n) does not hold for any h.
(2) τ(n) � nδ holds for any δ > 0.

Proof. We first prove (1). Fix r primes p1, p2, . . . , pr and consider

n = (2 · 3 · · · · · pr)m.

Then

τ(n) =
r∏
i=1

(m+ 1)

= (m+ 1)r

> mr.

But

m =
log n

log(2 · 3 · · · · · pr)
and so

τ(n) >
logr n

(log(2 · 3 · · · · · pr))r
� logr n.

This is (1).
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Now we prove (2). If

f(n) =
τ(n)

nδ

then f is multiplicative. We have

f(pm) =
m+ 1

pmδ
.

Now pm tends to infinity if and only if at least one of p or m tends to
infinity in which case f(pm) tends to zero. This is (2). �

In fact we can do a little bit better for (2) of (13.1). As before let
δ > 0. Let

n =
r∏
i=1

peii .

We have

τ(n)

nδ
=
e1 + 1

pe1δ1

e2 + 1

pe2δ2

. . .
en + 1

penδn

≤
∏
pi|n

max
x≥0

(
x+ 1

pδxi

)
.

For fixed δ, the quantity

max
x≥0

(
x+ 1

pδx

)
is equal to 1 for p sufficiently large (for example, consider the Taylor
series expansion of ex: log p ≥ 1/δ will do) and is never smaller than
one.

Thus
τ(n)

nδ
≤
∏
p

max
x≥0

(
x+ 1

pδx

)
= cδ.

Thus we get an explicit constant for (2) of (13.1).
We now turn to Euler’s ϕ-function. We have ϕ(n) ≤ n − 1, with

equality if and only if n is prime. We obtained a lower bound in a
homework problem. We now establish a better lower bound.

Theorem 13.2.

ϕ(n) � n

log log n
.

Proof. We have
ϕ(n)

n
=
∏
p|n

(
1 − 1

p

)
.
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and so taking logs

log
ϕ(n)

n
=
∑
p|n

log

(
1 − 1

p

)

= −
∑
p|n

1

p
+
∑
p|n

log

(
1 − 1

p

)
+

1

p

≤ −
∑
p|n

1

p
+O(1),

as ∑
p|n

log

(
1 − 1

p

)
+

1

p
>
∑
p|n

(
1

p
− 1

p− 1

)

> −
∑
k

(
1

k − 1
− 1

k

)
= −1.

Let p1, p2, . . . , pr−ρ be the primes less than log n dividing n and let
pr−ρ+1, pr−ρ+2, . . . , pr be the remaining primes dividing n,

∑
p|n

1

p
=

r−ρ∑
k=1

1

pk
+

r∑
k=r−ρ+1

1

pk

= S1 + S2.

We have

logρ n ≤ pρr−ρ+1

≤
r∏

k=r−ρ+1

pk

≤ n

and so

ρ ≤ log n

log log n
.

Therefore

S2 ≤
1

log n
· log n

log log n

= o(1).

3



By (8.2)

S1 < log log pr−ρ +O(1)

< log log log n+O(1).

Putting these two results together we get

log
ϕ(n)

n
> − log log log n+O(1),

so that
ϕ(n)

n
� 1

log log n
. �

Here is a result that ties ϕ(n) together with σ(n).

Theorem 13.3.
1

2
<
σ(n)ϕ(n)

n2
< 1.

Proof. We have

σ(n)ϕ(n) =
∏
p|n

(
pe+1 − 1

p− 1

)
n
∏
p|n

(
1 − 1

p

)

= n
∏
p|n

(
1 − p−(e+1)

1 − 1/p

)
n
∏
p|n

(
1 − 1

p

)
= n2

∏
p|n

(
1 − p−(e+1)

)
.

The coefficient of n2, the product over the primes, is clearly less than
one and at least ∏

p|n

(
1 − 1

p2

)
>

n∏
k=1

(
1 − 1

k2

)

>
∏
k

(
1 − 1

k2

)
>

1

2
,

where the last inequality is shown in (5.3). �

Corollary 13.4.

σ(n) � n log log n.
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Proof. By (13.2) we have

ϕ(n) � n

log log n

and so
σ(n)

n
<

n

ϕ(n)

� log log n. �
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