12. Bertrands Hypothesis

We will prove:
Theorem 12.1 (Bertrand's hypothesis). If n is a natural number then there is a prime p such that $n<p \leq 2 n$.

Bertrand's hypothesis was first formulated by Bertrand, who checked it up to six million. He stated it as a hypothesis rather than a conjecture, as we he was very confident it was correct. For example, between 500,000 and $1,000,000$ there are 36,960 primes.
(12.1) was proved by Chebyshev. In fact he also proved that for every $\epsilon>1 / 5$ there is a number ξ such that for all $x>\xi$ we may find a prime p such that $x \leq p \leq(1+\epsilon) x$ (in fact the prime number theorem implies that this is true for any $\epsilon>0$).

Lemma 12.2.

$$
\prod_{p \leq n} p<4^{n}
$$

for every natural number n.
Proof. By induction on n. The cases $n=1$ and $n=2$ are clear.
Now suppose it is true up to $n-1$, where $n \geq 3$. If n is even then

$$
\begin{aligned}
\prod_{p \leq n} p & =\prod_{p \leq n-1} p \\
& <4^{n-1} \\
& <4^{n}
\end{aligned}
$$

Thus we may assume that $n=2 m+1$ is odd.
Consider the binomial coefficient

$$
\binom{2 m+1}{m}=\frac{(2 m+1)!}{m!(m+1)!}
$$

This is divisible by every prime $m+2 \leq p \leq 2 m+1$. Thus

$$
\begin{aligned}
\prod_{p \leq 2 m+1} p & \leq\binom{ 2 m+1}{m} \cdot \prod_{p \leq m+1} p \\
& <\binom{2 m+1}{m} \cdot 4^{m+1}
\end{aligned}
$$

On the other hand,

$$
\binom{2 m+1}{m} \quad \text { and } \quad\binom{2 m+1}{m+1}
$$

are equal and both appear in the binomial expansion of $(1+1)^{2 m+1}$. Therefore

$$
\binom{2 m+1}{m} \leq \frac{1}{2} 2^{2 m+1}=4^{m} .
$$

Hence

$$
\begin{aligned}
\prod_{p \leq 2 m+1} p & <4^{m} \cdot 4^{m+1} \\
& =4^{2 m+1}
\end{aligned}
$$

This completes the induction and the proof.
Lemma 12.3. If $n \geq 3$ and $2 n / 3<p \leq n$ then p does not divide

$$
\binom{2 n}{n}
$$

Proof. Note that
(1) p is greater than 2 .
(2) p and $2 p$ are the only multiples of p less than or equal to $2 n$, since $3 p>2 n$.
(3) p is at most n.
(1) and (2) imply (2n)! is divisible by p^{2} but not p^{3} and (3) implies that p^{2} divides $(n!)^{2}$. Thus p does not divide

$$
\binom{2 n}{n}=\frac{(2 n)!}{(n!)^{2}}
$$

Proof of (12.1). We can do the cases $n=1$ and $n=2$ by hand.
Suppose there is no prime between n and $2 n$, where $n \geq 3$. We will bound n from above. (12.3) implies that if p divides

$$
\binom{2 n}{n}
$$

then $p \leq 2 n / 3$. Suppose that

$$
\binom{2 n}{n}=p^{e} m
$$

where m is coprime to p. By the proof of (7.1)

$$
\left.\binom{2 n}{n} \right\rvert\,\left(\prod_{p \leq 2 n} p^{r_{p}}\right)
$$

where r_{p} is the unique integer such that

$$
p^{r_{p}} \leq 2 n<p^{r_{p}+1}
$$

Thus $p^{e} \leq 2 n$.

If $e \geq 2$ then $p \leq \sqrt{2 n}$. In particular there are at most $\llcorner\sqrt{2 n}\lrcorner$ primes in the prime factorisation of

$$
\binom{2 n}{n}
$$

with exponent greater than 1 . Therefore

$$
\binom{2 n}{n} \leq(2 n)^{\llcorner\sqrt{2 n}\lrcorner} \cdot \prod_{p \leq 2 n / 3} p
$$

On the other hand

$$
\binom{2 n}{n}
$$

is the largest of the $2 n+1$ terms in the expansion of $(1+1)^{2 n}$, so that

$$
4^{n}<(2 n+1)\binom{2 n}{n}
$$

It follows that

$$
4^{n}<(2 n+1)(2 n)^{\sqrt{2 n}} \cdot \prod_{p \leq 2 n / 3} p
$$

(12.2) implies that

$$
4^{n}<(2 n+1)(2 n)^{\sqrt{2 n}} \cdot 4^{2 n / 3}
$$

As $2 n+1<4 n^{2}$ we get

$$
4^{n}<(2 n)^{\sqrt{2 n}+2} \cdot 4^{2 n / 3}
$$

so that

$$
4^{n / 3}<(2 n)^{\sqrt{2 n}+2}
$$

Taking logs gives

$$
\frac{n \log 4}{3}<(\sqrt{2 n}+2) \log (2 n)
$$

Note that

$$
512=2^{9} .
$$

If we plug in $n=512$ to the equation above the RHS is

$$
\left(2^{5}+2\right) 10 \log 2=340 \log 2
$$

and the LHS is

$$
\frac{2^{10} \log 2}{3}>341 \log 2
$$

Thus $n<512$. Thus if $n \geq 512$ there is a prime between n and $2 n$.
On the other hand, for the sequence of primes

$$
2,3,5,7,13,23,43,83,163,317,557,
$$

each prime is smaller than twice the preceding prime, so that there is a prime between n and $2 n$ for $n<512$ as well.

