12. BERTRANDS HYPOTHESIS
We will prove:

Theorem 12.1 (Bertrand’s hypothesis). If n is a natural number then
there is a prime p such that n < p < 2n.

Bertrand’s hypothesis was first formulated by Bertrand, who checked
it up to six million. He stated it as a hypothesis rather than a conjec-
ture, as we he was very confident it was correct. For example, between
500, 000 and 1,000,000 there are 36,960 primes.

(12.1) was proved by Chebyshev. In fact he also proved that for
every € > 1/5 there is a number & such that for all z > £ we may find a
prime p such that < p < (1+¢€)z (in fact the prime number theorem
implies that this is true for any € > 0).

Hp<4”,

Lemma 12.2.

for every natural number n.

Proof. By induction on n. The cases n = 1 and n = 2 are clear.
Now suppose it is true up to n — 1, where n > 3. If n is even then
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Thus we may assume that n = 2m + 1 is odd.
Counsider the binomial coeflficient
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This is divisible by every prime m + 2 < p < 2m + 1. Thus
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On the other hand,
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are equal and both appear in the binomial expansion of (1 + 1)?"*+1,

Therefore
2m + ]‘ < 122m+1 _ 4m
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Hence
IT p<am-ams
p<2m-+1
_ 42m+1.

This completes the induction and the proof. U

Lemma 12.3. Ifn >3 and 2n/3 < p < n then p does not divide
Proof. Note that

2n
()
(1) p is greater than 2.
(2) p and 2p are the only multiples of p less than or equal to 2n,
since 3p > 2n.
(3) pis at most n.

(1) and (2) imply (2n)! is divisible by p? but not p* and (3) implies
that p? divides (n!)?. Thus p does not divide
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Proof of (12.1). We can do the cases n = 1 and n = 2 by hand.

Suppose there is no prime between n and 2n, where n > 3. We will
bound n from above. (12.3)) implies that if p divides

2n
n
then p < 2n/3. Suppose that
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where m is coprime to p. By the proof of (7.1)

C\(m)

where 7, is the unique integer such that

p'r < 2n < prtl
Thus p° < 2n.



If e > 2 then p < v/2n. In particular there are at most Lv/2n_ primes
in the prime factorisation of
2n
n

with exponent greater than 1. Therefore

(2:) < (2n)V2. H ».

p<2n/3
2n
n

is the largest of the 2n + 1 terms in the expansion of (1+ 1)%", so that

4" < (2n+ 1) <2">
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On the other hand

It follows that
"< @+ 1))V ] »

p<2n/3
implies that
4" < (2n + 1)(2n) V2. 4213,
As 2n + 1 < 4n? we get
4" < (2n)V2H2 . 42003,

so that
473 < (2p) VP2,
Taking logs gives
nlog4
3

< (V2n+ 2)log(2n).
Note that
512 = 2°.
If we plug in n = 512 to the equation above the RHS is
(2° +2)101log 2 = 3401og 2
and the LHS is
210]0g 2
3
Thus n < 512. Thus if n > 512 there is a prime between n and 2n.
On the other hand, for the sequence of primes

2,3,5,7,13,23,43,83,163, 317, 557,
3

> 341log 2.



each prime is smaller than twice the preceding prime, so that there is
a prime between n and 2n for n < 512 as well. U
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