
12. Bertrands Hypothesis

We will prove:

Theorem 12.1 (Bertrand’s hypothesis). If n is a natural number then
there is a prime p such that n < p ≤ 2n.

Bertrand’s hypothesis was first formulated by Bertrand, who checked
it up to six million. He stated it as a hypothesis rather than a conjec-
ture, as we he was very confident it was correct. For example, between
500, 000 and 1, 000, 000 there are 36, 960 primes.

(12.1) was proved by Chebyshev. In fact he also proved that for
every ε > 1/5 there is a number ξ such that for all x > ξ we may find a
prime p such that x ≤ p ≤ (1 + ε)x (in fact the prime number theorem
implies that this is true for any ε > 0).

Lemma 12.2. ∏
p≤n

p < 4n,

for every natural number n.

Proof. By induction on n. The cases n = 1 and n = 2 are clear.
Now suppose it is true up to n− 1, where n ≥ 3. If n is even then∏

p≤n

p =
∏

p≤n−1

p

< 4n−1

< 4n.

Thus we may assume that n = 2m+ 1 is odd.
Consider the binomial coefficient(

2m+ 1

m

)
=

(2m+ 1)!

m!(m+ 1)!
.

This is divisible by every prime m+ 2 ≤ p ≤ 2m+ 1. Thus∏
p≤2m+1

p ≤
(

2m+ 1

m

)
·
∏

p≤m+1

p

<

(
2m+ 1

m

)
· 4m+1.

On the other hand,(
2m+ 1

m

)
and

(
2m+ 1

m+ 1

)
1



are equal and both appear in the binomial expansion of (1 + 1)2m+1.
Therefore (

2m+ 1

m

)
≤ 1

2
22m+1 = 4m.

Hence ∏
p≤2m+1

p < 4m · 4m+1

= 42m+1.

This completes the induction and the proof. �

Lemma 12.3. If n ≥ 3 and 2n/3 < p ≤ n then p does not divide(
2n

n

)
.

Proof. Note that

(1) p is greater than 2.
(2) p and 2p are the only multiples of p less than or equal to 2n,

since 3p > 2n.
(3) p is at most n.

(1) and (2) imply (2n)! is divisible by p2 but not p3 and (3) implies
that p2 divides (n!)2. Thus p does not divide(

2n

n

)
=

(2n)!

(n!)2
. �

Proof of (12.1). We can do the cases n = 1 and n = 2 by hand.
Suppose there is no prime between n and 2n, where n ≥ 3. We will

bound n from above. (12.3) implies that if p divides(
2n

n

)
then p ≤ 2n/3. Suppose that(

2n

n

)
= pem,

where m is coprime to p. By the proof of (7.1)(
2n

n

) ∣∣∣∣∣
(∏

p≤2n

prp

)
where rp is the unique integer such that

prp ≤ 2n < prp+1.

Thus pe ≤ 2n.
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If e ≥ 2 then p ≤
√

2n. In particular there are at most x
√

2ny primes
in the prime factorisation of (

2n

n

)
with exponent greater than 1. Therefore(

2n

n

)
≤ (2n)x

√
2ny ·

∏
p≤2n/3

p.

On the other hand (
2n

n

)
is the largest of the 2n+ 1 terms in the expansion of (1 + 1)2n, so that

4n < (2n+ 1)

(
2n

n

)
.

It follows that
4n < (2n+ 1)(2n)

√
2n ·

∏
p≤2n/3

p.

(12.2) implies that

4n < (2n+ 1)(2n)
√
2n · 42n/3.

As 2n+ 1 < 4n2 we get

4n < (2n)
√
2n+2 · 42n/3,

so that
4n/3 < (2n)

√
2n+2.

Taking logs gives

n log 4

3
< (
√

2n+ 2) log(2n).

Note that
512 = 29.

If we plug in n = 512 to the equation above the RHS is

(25 + 2)10 log 2 = 340 log 2

and the LHS is
210 log 2

3
> 341 log 2.

Thus n < 512. Thus if n ≥ 512 there is a prime between n and 2n.
On the other hand, for the sequence of primes

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 557,
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each prime is smaller than twice the preceding prime, so that there is
a prime between n and 2n for n < 512 as well. �
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