
11. Good approximations of π(x)

Somewhat paradoxically, primes are distributed in both a random
way and in a very controlled way.

For example, the primes between 9, 999, 900 and 10, 000, 000 are
9, 999, 901, 9, 999, 907, 9, 999, 929, 9, 999, 931, 9, 999, 937, 9, 999, 943,
9, 999, 971, 9, 999, 973, 9, 999, 991. On the other hand, the primes
between 10, 000, 000 and 10, 000, 100 are 10, 000, 019 and 10, 000, 079.
This would seem somewhat random and arbitrary.

It is interesting to plot π(x) over larger and larger ranges. At first
the graph looks pretty rough. Here is what happens up to x = 100.

But if we increase the range to x = 100, 000 then the graph is unbe-
lievably smooth:
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It is interesting to look at tables of π(x).
x π(x) x/π(x)
10 4 2.5
100 25 4.0
1000 168 6.0

10,000 1,229 8.1
100,000 9,592 10.4

1,000,000 78,498 12.7
10,000,000 664,579 15.0
100,000,000 5,761,455 17.4

1,000,000,000 50,847,534 19.7
10,000,000,000 455,052,512 22.0

Note that the ratio between x and π(x) jumps up by roughly 2.3.
Note that log 10 ≈ 2.3. Thus one arrives at a conjecture of the prime
number theorem

π(x) ∼ x

log x
.
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In fact this is how Gauss first conjectured the prime number theorem.
It is interesting to note that if one plots both π(x) (in blue) and

x/ log(x) (in red) then it is clear there is a lot of room for improvement.

Legendre discovered that a better approximation is given by shifting,

π(x) ≈ x

log x− 1.08366
.

Gauss observed that since the frequency of prime numbers at a very
large number x is roughly 1/ log x, a good approximation for π(x) ought
to be given by the logarithmic sum

ls(x) =
1

log 2
+

1

log 3
+ · · ·+ 1

log x
,

or perhaps better by the continuous version, the logarithmic integral:

li(x) =

∫ x

2

1

log t
dt.
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Riemann observed that in fact one should expect 1/ log(x) to count
not just the proportion of primes but the proportion of primes powers,
counting the square of a prime as half a prime and so on.

Thus

π(x) +
1

2
π(
√
x) +

1

3
π( 3
√
x) + · · · ≈ li(x).

Equivalently

π(x) ≈ li(x)− 1

2
li(
√
x)− 1

3
li( 3
√
x)− · · ·+ µ(n)

n
li(x1/n) + . . . .

The function on the RHS is denoted R(x), in honour of Riemann. It
gives an amazingly good approximation to π(x).

In fact

R(x) = 1 +
∞∑
n=1

1

nζ(n+ 1)

(log x)n

n!
.

Note that li(x) − R(x) is always positive, so that one would expect
li(x) to always be bigger than π(x). In fact for most values of x this is
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true but Littlewood showed the graphs of li(x) and π(x) cross infinitely
often and Skewes showed that this happens for some x at most

101010
34

.

In fact Riemann proved that

π(x) = R(x)−
∑
ρ

R(xρ)

where the sum ranges over the zeroes of ζ(s). One can get successively
better approximations to the RHS, Rk(x). The graph of R10(x) over
the range x ≤ 100 is a very good approximation to π(x) and the graph
of R29(x) is an even better approximation.

The prime number theorem is essentially equivalent to the statement
that ζ(s) has no zeroes on the line Re(s) = 1. Riemann established
that ζ(s) satisfies a functional equation

ζ(s) = 2sπs−1 sin(
πs

2
)Γ(1− s)ζ(1− s).

Here Γ(s) is the function

Γ(z) =

∫ ∞
0

xz−1e−x dx.

One can show that
Γ(z + 1) = zΓ(z)

so that Γ(n) = (n− 1)!. Using the functional equation, one can extend
the Riemann zeta function to the whole complex plane and that it is
zero at −2, −4, . . . . These are called the trivial zeroes.

Conjecture 11.1 (Riemann Hypothesis). If s is a non-trivial zero of
ζ(s) then Re(s) = 1/2.
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