11. Good approximations of $\pi(x)$

Somewhat paradoxically, primes are distributed in both a random way and in a very controlled way.

For example, the primes between $9,999,900$ and $10,000,000$ are 9, 999, 901, 9, 999, 907, 9, 999, 929, 9, 999, 931, 9, 999, 937, 9, 999, 943, $9,999,971,9,999,973,9,999,991$. On the other hand, the primes between $10,000,000$ and $10,000,100$ are $10,000,019$ and $10,000,079$. This would seem somewhat random and arbitrary.

It is interesting to plot $\pi(x)$ over larger and larger ranges. At first the graph looks pretty rough. Here is what happens up to $x=100$.

But if we increase the range to $x=100,000$ then the graph is unbelievably smooth:

It is interesting to look at tables of $\pi(x)$.

x	$\pi(x)$	$x / \pi(x)$
10	4	2.5
100	25	4.0
1000	168	6.0
10,000	1,229	8.1
100,000	9,592	10.4
$1,000,000$	78,498	12.7
$10,000,000$	664,579	15.0
$100,000,000$	$5,761,455$	17.4
$1,000,000,000$	$50,847,534$	19.7
$10,000,000,000$	$455,052,512$	22.0

Note that the ratio between x and $\pi(x)$ jumps up by roughly 2.3 . Note that $\log 10 \approx 2.3$. Thus one arrives at a conjecture of the prime number theorem

$$
\pi(x) \sim \frac{x}{\log x}
$$

In fact this is how Gauss first conjectured the prime number theorem.
It is interesting to note that if one plots both $\pi(x)$ (in blue) and $x / \log (x)$ (in red) then it is clear there is a lot of room for improvement.

Legendre discovered that a better approximation is given by shifting,

$$
\pi(x) \approx \frac{x}{\log x-1.08366} .
$$

Gauss observed that since the frequency of prime numbers at a very large number x is roughly $1 / \log x$, a good approximation for $\pi(x)$ ought to be given by the logarithmic sum

$$
\operatorname{ls}(x)=\frac{1}{\log 2}+\frac{1}{\log 3}+\cdots+\frac{1}{\log x}
$$

or perhaps better by the continuous version, the logarithmic integral:

$$
\operatorname{li}(x)=\int_{2}^{x} \frac{1}{\log t} \mathrm{~d} t
$$

Riemann observed that in fact one should expect $1 / \log (x)$ to count not just the proportion of primes but the proportion of primes powers, counting the square of a prime as half a prime and so on.

Thus

$$
\pi(x)+\frac{1}{2} \pi(\sqrt{x})+\frac{1}{3} \pi(\sqrt[3]{x})+\cdots \approx \operatorname{li}(x)
$$

Equivalently

$$
\pi(x) \approx \operatorname{li}(x)-\frac{1}{2} \operatorname{li}(\sqrt{x})-\frac{1}{3} \operatorname{li}(\sqrt[3]{x})-\cdots+\frac{\mu(n)}{n} \operatorname{li}\left(x^{1 / n}\right)+\ldots
$$

The function on the RHS is denoted $R(x)$, in honour of Riemann. It gives an amazingly good approximation to $\pi(x)$.

In fact

$$
R(x)=1+\sum_{n=1}^{\infty} \frac{1}{n \zeta(n+1)} \frac{(\log x)^{n}}{n!} .
$$

Note that $\operatorname{li}(x)-R(x)$ is always positive, so that one would expect $\operatorname{li}(x)$ to always be bigger than $\pi(x)$. In fact for most values of x this is
true but Littlewood showed the graphs of $\operatorname{li}(x)$ and $\pi(x)$ cross infinitely often and Skewes showed that this happens for some x at most

$$
10^{10^{10^{34}}} .
$$

In fact Riemann proved that

$$
\pi(x)=R(x)-\sum_{\rho} R\left(x^{\rho}\right)
$$

where the sum ranges over the zeroes of $\zeta(s)$. One can get successively better approximations to the RHS, $R_{k}(x)$. The graph of $R_{10}(x)$ over the range $x \leq 100$ is a very good approximation to $\pi(x)$ and the graph of $R_{29}(x)$ is an even better approximation.

The prime number theorem is essentially equivalent to the statement that $\zeta(s)$ has no zeroes on the line $\operatorname{Re}(s)=1$. Riemann established that $\zeta(s)$ satisfies a functional equation

$$
\zeta(s)=2^{s} \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)
$$

Here $\Gamma(s)$ is the function

$$
\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} \mathrm{~d} x
$$

One can show that

$$
\Gamma(z+1)=z \Gamma(z)
$$

so that $\Gamma(n)=(n-1)$!. Using the functional equation, one can extend the Riemann zeta function to the whole complex plane and that it is zero at $-2,-4, \ldots$. These are called the trivial zeroes.

Conjecture 11.1 (Riemann Hypothesis). If s is a non-trivial zero of $\zeta(s)$ then $\operatorname{Re}(s)=1 / 2$.

