10. The PRIME NUMBER THEOREM

Here we give a proof of the prime number theorem, using some complex analysis.
Theorem 10.1 (Prime Number Theorem).

$$
\pi(x) \sim \frac{x}{\log x}
$$

We need to recall some basic facts from complex analysis.
Definition 10.2. A function $f: \mathbb{C} \longrightarrow \mathbb{C}$ is called analytic around z_{0} if $f(z)$ is represented by a power series centred at z_{0},

$$
f(z)=a_{0}+a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\ldots,
$$

valid for $\left|z-z_{0}\right|<r$.
More generally we allow the domain to be an open subset $U \subset \mathbb{C}$. Of course we require the power series to converge inside the circle of radius r centred at z_{0}. The maximal value of r is called the radius of convergence.

Example 10.3. Consider

$$
\frac{1}{1-z}
$$

This is analytic around 0 . Indeed

$$
\frac{1}{1-z}=1+z+z^{2}+z^{3}+\ldots
$$

and the radius of convergence is 1 . In fact the LHS is not defined when $z=1$ and this automatically places an upper bound on the radius of convergence.

Consider

$$
\frac{1}{1-x} \quad \text { and } \quad \frac{1}{1+x^{2}}
$$

Both are real functions with a power series with radius of convergence 1. The first function is not defined at $x=1$ but the second function is defined at $x= \pm 1$. If we extend these functions to complex functions

$$
\frac{1}{1-z} \quad \text { and } \quad \frac{1}{1+z^{2}}
$$

then note that the first function is not defined at $z=1$ and the second function is not defined at $z= \pm i . z=1$ and $z= \pm i$ are called poles of the corresponding functions.

Note that we can differentiate a power series, term by term, to define the derivative of an analytic function.

Definition 10.4. We say that a complex function $f: U \longrightarrow \mathbb{C}$ is holomorphic if the derivative exists

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} .
$$

Example 10.5. The Riemann zeta-function

$$
\zeta(s)=\sum_{k} \frac{1}{k^{s}}
$$

extends to a holomorphic function for $\operatorname{Re}(s)>1$.
Indeed, the series converges for $s>1$ and one can differentiate term by term.

Note that (10.4) is much more restrictive than differentiability of a real function, since we can approach z_{0} along any curve. We have the following amazing:

Theorem 10.6. If $f: U \longrightarrow \mathbb{C}$ is a function then f is holomorphic if and only if it is analytic.

In particular if a complex function has one derivative then it is infinitely differentiable (since one can differentiate a power series as many times as one wants).

The most interesting thing about analytic functions is that one can often extend them around poles.

Theorem 10.7. The function

$$
\zeta(s)-\frac{1}{s-1}
$$

extends to a holomorphic function for all $\operatorname{Re}(s)>0$.
Proof. For $\operatorname{Re}(s)>1$ we have

$$
\begin{aligned}
\zeta(s)-\frac{1}{s-1} & =\sum_{n=1}^{\infty} \frac{1}{n^{s}}-\int_{1}^{\infty} \frac{1}{x^{s}} \mathrm{~d} x \\
& =\sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{n^{s}}-\frac{1}{x^{s}} \mathrm{~d} x .
\end{aligned}
$$

The last expression converges absolutely for $\operatorname{Re}(s)>0$ because

$$
\begin{aligned}
\left|\int_{n}^{n+1} \frac{1}{n^{s}}-\frac{1}{x^{s}} \mathrm{~d} x\right| & =\left|s \int_{n}^{n+1} \int_{n}^{x} \frac{1}{u^{s}} \mathrm{~d} u\right| \\
& \leq \max _{n \leq u \leq n+1}\left|\frac{s}{u^{s+1}}\right| \\
& =\frac{|s|}{n^{\operatorname{Re}(s)+1}},
\end{aligned}
$$

by the mean value theorem.
We need a little bit of notation.
Definition 10.8. Let $U \subset \mathbb{C}$ and let $z_{0} \in U$ be a point of U. If $f(z)$ is a holomorphic function on $U-\left\{z_{0}\right\}$ and we can write $f(z)=\left(z-z_{0}\right)^{\mu} g(z)$ where $g(z)$ is holomorphic on U and not zero at z_{0} then we say that $f(z)$ has a zero of order μ if $\mu \geq 0$ and a pole of order $-\mu$ if $\mu<0$.

Definition-Lemma 10.9. Let $f(z): U \longrightarrow \mathbb{C}$ be a holomorphic function.

The logarithmic derivative of $f(z)$ is equal to

$$
\frac{\mathrm{d} \log f(z)}{\mathrm{d} z}
$$

If z_{0} is a zero of $f(z)$ of order μ then

$$
\frac{f^{\prime}(z)}{f(z)}-\frac{\mu}{z-z_{0}}
$$

is holomorphic.
Proof. By assumption $f(z)=\left(z-z_{0}\right)^{\mu} g(z)$, where $g(z)$ is holomorphic and non-zero at z_{0}, so that

$$
\log f(z)=\mu \log \left(z-z_{0}\right)+\log g(z)
$$

Therefore

$$
\frac{\mathrm{d} \log f(z)}{\mathrm{d} z}=\frac{\mu}{z-z_{0}}+\frac{g^{\prime}(z)}{g(z)}
$$

We introduce notation for two functions we have already seen implicitly:

$$
\Phi(s)=\sum_{p} \frac{\log p}{p^{s}} \quad \text { and } \quad \vartheta(x)=\sum_{p \leq x} \log p
$$

Theorem 10.10. If $\operatorname{Re}(s) \geq 1$ then

- $\zeta(s) \neq 0$
- $\Phi(s)-1 /(s-1)$ is holomorphic.

Proof. If $\operatorname{Re}(s)>1$ then

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

by the usual argument and the RHS is not zero. We use this to compute the logarithmic derivative

$$
\begin{aligned}
-\frac{\zeta^{\prime}(s)}{\zeta(s)} & =-\frac{\mathrm{d} \log \zeta(s)}{\mathrm{d} s} \\
& =\sum_{p} \frac{\mathrm{~d} \log \left(1-p^{-s}\right)}{\mathrm{d} s} \\
& =\sum_{p} \frac{\mathrm{~d} \log \left(1-e^{-s \log p}\right)}{\mathrm{d} s} \\
& =\sum_{p} \frac{\log p e^{-s \log p}}{1-e^{-s \log p}} \\
& =\sum_{p} \frac{\log p}{p^{s}-1} \\
& =\Phi(s)+\frac{\log p}{p^{s}\left(p^{s}-1\right)} .
\end{aligned}
$$

The last sum converges for $\operatorname{Re}(s)>1 / 2$. Thus $\Phi(s)$ extends to a holomorphic function away from $s=1$ and the zeroes of $\zeta(s)$, where it has poles. Suppose that $\zeta(s)$ has a zero of order μ at $1+i \alpha$ and a zero of order ν at $1+2 i \alpha$. If we let the real number ϵ go to zero from above then we get
$\lim _{\epsilon \rightarrow 0^{+}} \epsilon \Phi(1+\epsilon)=1 \quad \lim _{\epsilon \rightarrow 0^{+}} \epsilon \Phi(1+\epsilon \pm i \alpha)=-\mu \quad$ and $\quad \lim _{\epsilon \rightarrow 0^{+}} \epsilon \Phi(1+\epsilon \pm 2 i \alpha)=-\nu$.
On the other hand,

$$
\begin{aligned}
6-8 \mu-2 \nu & =\lim _{\epsilon \rightarrow 0^{+}} \sum_{r=-2}^{r=2}\binom{4}{2+r} \Phi(1+\epsilon \pm r i \alpha) \\
& =\lim _{\epsilon \rightarrow 0^{+}} \sum_{p} \frac{\log p}{p^{1+\epsilon}}\left(p^{i \alpha / 2}+p^{-i \alpha / 2}\right)^{4}
\end{aligned}
$$

$$
\geq 0
$$

Thus $\mu=0$ and so $\zeta(s)$ has no zeroes on the line $\operatorname{Re}(s)=1$.
Here is the main reason we need complex analysis.

Theorem 10.11. Let $f(t) \geq 0$ be a bounded and locally integrable function. Suppose that the function

$$
g(z)=\int_{0}^{\infty} f(t) e^{-z t} \mathrm{~d} t
$$

defined for $\operatorname{Re}(z)>0$ extends holomorphically to $\operatorname{Re}(z) \geq 0$.
Then

$$
\int_{0}^{\infty} f(t) \mathrm{d} t
$$

is a convergent integral (equal to $g(0)$).

Corollary 10.12.

$$
\int_{1}^{\infty} \frac{\vartheta(x)-x}{x^{2}} \mathrm{~d} x
$$

is a convergent integral.
Proof. We apply the summation formula to

$$
\lambda_{n}=p_{n} \quad c_{n}=\log p_{n} \quad \text { and } \quad f(x)=x^{-s}
$$

We get

$$
\sum_{p \leq x} \frac{\log p}{p^{s}}=\frac{\vartheta(x)}{x^{s}}+s \int_{1}^{x} \frac{\vartheta(u)}{u^{s+1}} \mathrm{~d} u .
$$

Recall that we already proved that

$$
\vartheta(x)=O(x) .
$$

If $\operatorname{Re}(s)>1$ then taking the limit as x goes to infinity we get

$$
\begin{aligned}
\Phi(s) & =\sum_{p} \frac{\log p}{p^{s}} \\
& =s \int_{1}^{\infty} \frac{\vartheta(u)}{u^{s+1}} \mathrm{~d} u \\
& =s \int_{0}^{\infty} \vartheta\left(e^{t}\right) e^{-s t} \mathrm{~d} t
\end{aligned}
$$

Now apply 10.11) to the two functions $f(t)=\vartheta\left(e^{t}\right) e^{-t}-1$ and

$$
g(z)=\frac{\Phi(z+1)}{z+1}-\frac{1}{z} .
$$

Theorem 10.13. $\vartheta(x) \sim x$.

Proof. Suppose that $\vartheta(x) \geq \lambda x$ for all x sufficiently large, for some $\lambda>1$. As $\vartheta(x)$ is monotonic increasing, we have

$$
\begin{aligned}
\int_{x}^{\lambda x} \frac{\vartheta(t)-t}{t^{2}} \mathrm{~d} t & \geq \int_{x}^{\lambda x} \frac{\lambda x-t}{t^{2}} \mathrm{~d} t \\
& =\int_{1}^{\lambda} \frac{\lambda-t}{t^{2}} \mathrm{~d} t \\
& >0
\end{aligned}
$$

for any such x. If we sum over the intervals $[\lambda x, x],\left[\lambda x, \lambda^{2} x\right]$ and so on, this contradicts (10.12).

Similarly, now suppose that $\vartheta(x) \leq \lambda x$ for all x sufficiently large, for some $\lambda<1$. As $\vartheta(x)$ is monotonic increasing, we have

$$
\begin{aligned}
\int_{\lambda x}^{x} \frac{\vartheta(t)-t}{t^{2}} \mathrm{~d} t & \geq \int_{\lambda x}^{x} \frac{\lambda x-t}{t^{2}} \mathrm{~d} t \\
& =\int_{\lambda}^{1} \frac{\lambda-t}{t^{2}} \mathrm{~d} t \\
& <0
\end{aligned}
$$

for any such x. If we sum over the intervals $[\lambda x, x],[x, 1 / \lambda x]$ and so on, this contradicts (10.12).

Proof of (10.1). It is a homework problem to show that (10.1) follows from 10.13).

We will need
Theorem 10.14 (Cauchy's integral formula). Let $f(z)$ be a holomorphic function on a region U and let C be a closed contour that goes once around $z_{0} \in U$.

Then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{z-z_{0}} \mathrm{~d} z
$$

Proof of (10.11). For $T>0$ let

$$
g_{T}(z)=\int_{0}^{T} f(t) \mathrm{d} t .
$$

Then $g_{T}(z)$ is holomorphic for all z and we want to show that

$$
\lim _{T \rightarrow \infty} g_{T}(0)=g(0)
$$

Let C be the boundary of the region

$$
\{z \in \mathbb{C}||z| \leq \underset{6}{R}, \operatorname{Re}(z) \geq-\delta\}
$$

where R is large and δ is small enough (depending on R) so that $g(z)$ is holomorphic on C. Then (10.14) implies that

$$
g(0)-g_{T}(0)=\frac{1}{2 \pi i} \int_{C}\left(g(z)-g_{T}(z)\right) e^{z T}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{\mathrm{d} z}{z} .
$$

Now on the semicircle C_{+}, the part of the boundary C where the real part is positive, the integrand is bounded by

$$
\frac{2 B}{R^{2}}
$$

where $B=\max _{t \geq 0}|f(t)|$, since

$$
\begin{aligned}
\left|g(z)-g_{T}(z)\right| & =\left|\int_{T}^{\infty} f(t) e^{-z t} \mathrm{~d} t\right| \\
& \leq B \int_{T}^{\infty}\left|e^{-z t}\right| \mathrm{d} t \\
& =B \frac{e^{-\operatorname{Re}(z) T}}{\operatorname{Re}(z)}
\end{aligned}
$$

and

$$
\left|e^{z T}\left(1+\frac{z^{2}}{R^{2}}\right) \frac{1}{z}\right|=e^{\operatorname{Re}(z) T} \frac{2 \operatorname{Re}(z)}{R^{2}}
$$

As the semi-circle C_{+}has length πR the absolute value of the integral over C_{+}is bounded by B / R.

Now consider the integral over C_{-}, where the real part is negative. We deal with $g(z)$ and $g_{T}(z)$ separately. Since $g_{T}(z)$ is entire, that is, everywhere holomorphic, we can replace C_{-}by the semi-circle C_{-}^{\prime}, the other half of C_{+}. We get the same bound as before, since

$$
\begin{aligned}
\left|g_{T}(z)\right| & =\left|\int_{0}^{T} f(t) e^{-z t} \mathrm{~d} t\right| \\
& \leq B \int_{-\infty}^{T}\left|e^{-z t}\right| \mathrm{d} t \\
& =B \frac{e^{-\operatorname{Re}(z) T}}{|\operatorname{Re}(z)|}
\end{aligned}
$$

Thus the integral of $g_{T}(z)$ over C_{-}goes to zero as R goes to infinity.
Finally the remaining integral over C_{-}also goes to zero as R goes to infinity, as the integrand is the product of

$$
\frac{g(z)}{z}\left(1+\frac{z^{2}}{R^{2}}\right)
$$

which is independent of T and the function $e^{z T}$, which goes to zero rapidly as T goes to infinity.

Thus

$$
\limsup _{T \rightarrow \infty}\left|g(0)-g_{T}(0)\right| \leq \frac{2 B}{R} .
$$

Now let R go to infinity.

