10. THE PRIME NUMBER THEOREM

Here we give a proof of the prime number theorem, using some com-
plex analysis.

Theorem 10.1 (Prime Number Theorem).
()

We need to recall some basic facts from complex analysis.

T

~ logx

Definition 10.2. A function f: C — C is called analytic around z
if f(z) is represented by a power series centred at z,
f(2) =ap+ay(z — 29) +as(z — 20)* + .. .,
valid for |z — z| <.
More generally we allow the domain to be an open subset U C C.
Of course we require the power series to converge inside the circle of

radius r centred at zp. The maximal value of r is called the radius of
convergence.

Example 10.3. Consider
1

1—2

This is analytic around 0. Indeed

=14z+4224+234. ..

1—=z
and the radius of convergence is 1. In fact the LHS is not defined when
z = 1 and this automatically places an upper bound on the radius of
convergence.

Consider

1 1
and —_—
1—2 1+ 22

Both are real functions with a power series with radius of convergence
1. The first function is not defined at x = 1 but the second function is
defined at x = £1. If we extend these functions to complex functions

1 1
d
1—=2 an 1+ 22

then note that the first function is not defined at z = 1 and the second
function is not defined at z = +¢. 2z = 1 and z = =i are called poles
of the corresponding functions.

Note that we can differentiate a power series, term by term, to define

the derivative of an analytic function.
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Definition 10.4. We say that a complex function f: U — C is holo-
morphic if the derivative exists

Example 10.5. The Riemann zeta-function
1
C(s)=> T
k

extends to a holomorphic function for Re(s) > 1.

Indeed, the series converges for s > 1 and one can differentiate term
by term.

Note that is much more restrictive than differentiability of a
real function, since we can approach 2, along any curve. We have the
following amazing:

Theorem 10.6. If f: U — C s a function then f is holomorphic if
and only if it is analytic.

In particular if a complex function has one derivative then it is infin-
itely differentiable (since one can differentiate a power series as many
times as one wants).

The most interesting thing about analytic functions is that one can
often extend them around poles.

Theorem 10.7. The function

((s) = ==

extends to a holomorphic function for all Re(s) > 0.

Proof. For Re(s) > 1 we have




The last expression converges absolutely for Re(s) > 0 because

n+1 1 n+1
/ — = — dx — du
n N
max
- n<u<n+1 u5+1
- nRe(s)+1’
by the mean value theorem. O

We need a little bit of notation.

Definition 10.8. Let U C C and let zg € U be a point of U. If f(z) is a
holomorphic function on U—{zy} and we can write f(z) = (z—2z0)"g(2)
where g(z) is holomorphic on U and not zero at zy then we say that
f(2) has a zero of order p if p > 0 and a pole of order —pu if
w<0.

Definition-Lemma 10.9. Let f(z): U — C be a holomorphic func-
tion.
The logarithmic derivative of f(z) is equal to

dlog f(2)
dz
If zy is a zero of f(z) of order u then

/'(2) p

f(z) z—2

18 holomorphic.

Proof. By assumption f(z) = (z — z0)*g(z), where g(z) is holomorphic
and non-zero at zp, so that

log f(2) = plog(z — 2) + log g(2).

Therefore dl )

ogflz) __n gk =

dz z—2z0  g(2)

We introduce notation for two functions we have already seen im-

plicitly:

log p

O(s) = Z > and Zlogp
p P p<z
Theorem 10.10. If Re(s) > 1 then
e () 0

e O(s) —1/(s— 1) is holomorphic.
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Proof. If Re(s) > 1 then

m(-2)

p

by the usual argument and the RHS is not zero. We use this to compute
the logarithmic derivative

) dlog(s)
C(s) ds

_ Z leg(l — pis)
ds
p

— e—slogp)

B dlog(1
N Z ds

logpe slogp
- Z 1 — e~ slogp

pi(p* —1)
The last sum converges for Re(s) > 1/2. Thus ®(s) extends to a
holomorphic function away from s = 1 and the zeroes of ((s), where it
has poles. Suppose that ((s) has a zero of order u at 1+ i« and a zero
of order v at 1+ 2ia. If we let the real number € go to zero from above
then we get

lim e®(1+¢€) =1 lim e®(1+etia) = —p and  lim eP(14e+2ia) = —

e—0t e—0t e—07t

On the other hand,

r=2

4
—2v =1 d(1 +ri
6 —8u—2v = Jim )3 <2+r) (1+e=£ria)
. 108D a2 | _iajaya
= lim > F(p +p~"7)
> 0.
Thus @ = 0 and so ((s) has no zeroes on the line Re(s) = 1. O

Here is the main reason we need complex analysis.
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Theorem 10.11. Let f(t) > 0 be a bounded and locally integrable
function. Suppose that the function

o) = [ re

defined for Re(z) > 0 extends holomorphically to Re(z) > 0.

Then
/ () dt
0

is a convergent integral (equal to g(0)).

Corollary 10.12.

18 a convergent integral.
Proof. We apply the summation formula to

An = Dn ¢, = logp, and flz)=a"%.
We get

Z log p _ J(z) +S/ J(u) du.
xs 1 us+1

S
p<w p

Recall that we already proved that
I(z) = O(x).

If Re(s) > 1 then taking the limit as = goes to infinity we get

B(s) = Z log p

:s/ J(e)e s dt.
0

Now apply ((10.11)) to the two functions f(t) = d(e’)e™" — 1 and
Oz +1
9(2) = ety

1
- —. U
z+1 z
Theorem 10.13. J(z) ~ x.



Proof. Suppose that J(x) > Az for all = sufficiently large, for some
A > 1. As ¥(x) is monotonic increasing, we have

)\2’19 o Az o
/ (t) —t 0t > / et
x t? x t?

>\_
:/Aztdt
,

> 0,

for any such x. If we sum over the intervals [Az,z|, [Az, \2x] and so

on, this contradicts ((10.12]).

Similarly, now suppose that ¥(z) < Ax for all = sufficiently large, for
some A < 1. As 9¥(x) is monotonic increasing, we have

T9(t) —t “Ar —t

/ ) dtz/ T at
Az 13 Az 13
I\ —t

[t

<0,

for any such z. If we sum over the intervals [Az,z], [x,1/A\z] and so

on, this contradicts ((10.12]). O

Proof of (10.1)). It is a homework problem to show that (10.1]) follows
from ((10.13)). U

We will need

Theorem 10.14 (Cauchy’s integral formula). Let f(z) be a holomor-
phic function on a region U and let C' be a closed contour that goes

once around zy € U.
Then
1 f(?)

= ——dz.
f(z) 2m Joz — 2o :

Proof of (10.11f). For T" > 0 let
T
gr(z) :/ f(t)dt.
0

Then gr(z) is holomorphic for all z and we want to show that

Jim g7(0) = 9(0)

Let C be the boundary of the region
{z€Cl|z| < R,Re(z) > -0}
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where R is large and 6 is small enough (depending on R) so that g(z)
is holomorphic on C'. Then (|10.14}) implies that

1 22\ dz
0) — gr(0) = =— — Tl ) =
00) = 92(0) = 5 [ a0) - ar(ene (14 2)
Now on the semicircle C'y, the part of the boundary C' where the
real part is positive, the integrand is bounded by

2B
ﬁ7

where B = max;>¢ | f(t)], since

l9(2) — gr(2)| =

/ f(t)e dt‘

T

gB/|€ﬂ&
T

e—Re(z)T
= B—7
Re(z)
and
2
2T < 1 _ RezTQRe(z>

As the semi-circle Cy has length wR the absolute value of the integral
over C; is bounded by B/R.

Now consider the integral over C_, where the real part is negative.
We deal with g(z) and gr(z) separately. Since gr(z) is entire, that is,
everywhere holomorphic, we can replace C_ by the semi-circle C’ | the
other half of C';. We get the same bound as before, since

T
/ ft)e ™ dt’
0

T
SB/ le™#| dt

B e~ Re(2)T
| Re(2)|
Thus the integral of gr(z) over C_ goes to zero as R goes to infinity.
Finally the remaining integral over C'_ also goes to zero as R goes
to infinity, as the integrand is the product of

7

lgr(2)] =




which is independent of 7" and the function e*”, which goes to zero
rapidly as T goes to infinity.

Thus 0B
limsup [g(0) — gr(0)] < R
T—o0

Now let R go to infinity. 0
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