
10. The prime number theorem

Here we give a proof of the prime number theorem, using some com-
plex analysis.

Theorem 10.1 (Prime Number Theorem).

π(x) ∼ x

log x
.

We need to recall some basic facts from complex analysis.

Definition 10.2. A function f : C −→ C is called analytic around z0
if f(z) is represented by a power series centred at z0,

f(z) = a0 + a1(z − z0) + a2(z − z0)2 + . . . ,

valid for |z − z0| < r.

More generally we allow the domain to be an open subset U ⊂ C.
Of course we require the power series to converge inside the circle of
radius r centred at z0. The maximal value of r is called the radius of
convergence.

Example 10.3. Consider
1

1− z
.

This is analytic around 0. Indeed

1

1− z
= 1 + z + z2 + z3 + . . .

and the radius of convergence is 1. In fact the LHS is not defined when
z = 1 and this automatically places an upper bound on the radius of
convergence.

Consider
1

1− x
and

1

1 + x2

Both are real functions with a power series with radius of convergence
1. The first function is not defined at x = 1 but the second function is
defined at x = ±1. If we extend these functions to complex functions

1

1− z
and

1

1 + z2

then note that the first function is not defined at z = 1 and the second
function is not defined at z = ±i. z = 1 and z = ±i are called poles
of the corresponding functions.

Note that we can differentiate a power series, term by term, to define
the derivative of an analytic function.
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Definition 10.4. We say that a complex function f : U −→ C is holo-
morphic if the derivative exists

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
.

Example 10.5. The Riemann zeta-function

ζ(s) =
∑
k

1

ks

extends to a holomorphic function for Re(s) > 1.

Indeed, the series converges for s > 1 and one can differentiate term
by term.

Note that (10.4) is much more restrictive than differentiability of a
real function, since we can approach z0 along any curve. We have the
following amazing:

Theorem 10.6. If f : U −→ C is a function then f is holomorphic if
and only if it is analytic.

In particular if a complex function has one derivative then it is infin-
itely differentiable (since one can differentiate a power series as many
times as one wants).

The most interesting thing about analytic functions is that one can
often extend them around poles.

Theorem 10.7. The function

ζ(s)− 1

s− 1

extends to a holomorphic function for all Re(s) > 0.

Proof. For Re(s) > 1 we have

ζ(s)− 1

s− 1
=
∞∑
n=1

1

ns
−
∫ ∞
1

1

xs
dx

=
∞∑
n=1

∫ n+1

n

1

ns
− 1

xs
dx.
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The last expression converges absolutely for Re(s) > 0 because∣∣∣∣∫ n+1

n

1

ns
− 1

xs
dx

∣∣∣∣ =

∣∣∣∣s ∫ n+1

n

∫ x

n

1

us
du

∣∣∣∣
≤ max

n≤u≤n+1

∣∣∣ s

us+1

∣∣∣
=

|s|
nRe(s)+1

,

by the mean value theorem. �

We need a little bit of notation.

Definition 10.8. Let U ⊂ C and let z0 ∈ U be a point of U . If f(z) is a
holomorphic function on U−{z0} and we can write f(z) = (z−z0)µg(z)
where g(z) is holomorphic on U and not zero at z0 then we say that
f(z) has a zero of order µ if µ ≥ 0 and a pole of order −µ if
µ < 0.

Definition-Lemma 10.9. Let f(z) : U −→ C be a holomorphic func-
tion.

The logarithmic derivative of f(z) is equal to

d log f(z)

dz
If z0 is a zero of f(z) of order µ then

f ′(z)

f(z)
− µ

z − z0
is holomorphic.

Proof. By assumption f(z) = (z− z0)µg(z), where g(z) is holomorphic
and non-zero at z0, so that

log f(z) = µ log(z − z0) + log g(z).

Therefore
d log f(z)

dz
=

µ

z − z0
+
g′(z)

g(z)
. �

We introduce notation for two functions we have already seen im-
plicitly:

Φ(s) =
∑
p

log p

ps
and ϑ(x) =

∑
p≤x

log p.

Theorem 10.10. If Re(s) ≥ 1 then

• ζ(s) 6= 0
• Φ(s)− 1/(s− 1) is holomorphic.
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Proof. If Re(s) > 1 then

ζ(s) =
∏
p

(
1− 1

ps

)−1
by the usual argument and the RHS is not zero. We use this to compute
the logarithmic derivative

−ζ
′(s)

ζ(s)
= −d log ζ(s)

ds

=
∑
p

d log(1− p−s)
ds

=
∑
p

d log(1− e−s log p)
ds

=
∑
p

log pe−s log p

1− e−s log p

=
∑
p

log p

ps − 1

= Φ(s) +
log p

ps(ps − 1)
.

The last sum converges for Re(s) > 1/2. Thus Φ(s) extends to a
holomorphic function away from s = 1 and the zeroes of ζ(s), where it
has poles. Suppose that ζ(s) has a zero of order µ at 1 + iα and a zero
of order ν at 1 + 2iα. If we let the real number ε go to zero from above
then we get

lim
ε→0+

εΦ(1+ε) = 1 lim
ε→0+

εΦ(1+ε±iα) = −µ and lim
ε→0+

εΦ(1+ε±2iα) = −ν.

On the other hand,

6− 8µ− 2ν = lim
ε→0+

r=2∑
r=−2

(
4

2 + r

)
Φ(1 + ε± riα)

= lim
ε→0+

∑
p

log p

p1+ε
(piα/2 + p−iα/2)4

≥ 0.

Thus µ = 0 and so ζ(s) has no zeroes on the line Re(s) = 1. �

Here is the main reason we need complex analysis.
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Theorem 10.11. Let f(t) ≥ 0 be a bounded and locally integrable
function. Suppose that the function

g(z) =

∫ ∞
0

f(t)e−zt dt

defined for Re(z) > 0 extends holomorphically to Re(z) ≥ 0.
Then ∫ ∞

0

f(t) dt

is a convergent integral (equal to g(0)).

Corollary 10.12. ∫ ∞
1

ϑ(x)− x
x2

dx

is a convergent integral.

Proof. We apply the summation formula to

λn = pn cn = log pn and f(x) = x−s.

We get ∑
p≤x

log p

ps
=
ϑ(x)

xs
+ s

∫ x

1

ϑ(u)

us+1
du.

Recall that we already proved that

ϑ(x) = O(x).

If Re(s) > 1 then taking the limit as x goes to infinity we get

Φ(s) =
∑
p

log p

ps

= s

∫ ∞
1

ϑ(u)

us+1
du

= s

∫ ∞
0

ϑ(et)e−st dt.

Now apply (10.11) to the two functions f(t) = ϑ(et)e−t − 1 and

g(z) =
Φ(z + 1)

z + 1
− 1

z
. �

Theorem 10.13. ϑ(x) ∼ x.
5



Proof. Suppose that ϑ(x) ≥ λx for all x sufficiently large, for some
λ > 1. As ϑ(x) is monotonic increasing, we have∫ λx

x

ϑ(t)− t
t2

dt ≥
∫ λx

x

λx− t
t2

dt

=

∫ λ

1

λ− t
t2

dt

> 0,

for any such x. If we sum over the intervals [λx, x], [λx, λ2x] and so
on, this contradicts (10.12).

Similarly, now suppose that ϑ(x) ≤ λx for all x sufficiently large, for
some λ < 1. As ϑ(x) is monotonic increasing, we have∫ x

λx

ϑ(t)− t
t2

dt ≥
∫ x

λx

λx− t
t2

dt

=

∫ 1

λ

λ− t
t2

dt

< 0,

for any such x. If we sum over the intervals [λx, x], [x, 1/λx] and so
on, this contradicts (10.12). �

Proof of (10.1). It is a homework problem to show that (10.1) follows
from (10.13). �

We will need

Theorem 10.14 (Cauchy’s integral formula). Let f(z) be a holomor-
phic function on a region U and let C be a closed contour that goes
once around z0 ∈ U .

Then

f(z0) =
1

2πi

∫
C

f(z)

z − z0
dz.

Proof of (10.11). For T > 0 let

gT (z) =

∫ T

0

f(t) dt.

Then gT (z) is holomorphic for all z and we want to show that

lim
T→∞

gT (0) = g(0).

Let C be the boundary of the region

{ z ∈ C | |z| ≤ R,Re(z) ≥ −δ }
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where R is large and δ is small enough (depending on R) so that g(z)
is holomorphic on C. Then (10.14) implies that

g(0)− gT (0) =
1

2πi

∫
C

(g(z)− gT (z))ezT
(

1 +
z2

R2

)
dz

z
.

Now on the semicircle C+, the part of the boundary C where the
real part is positive, the integrand is bounded by

2B

R2
,

where B = maxt≥0 |f(t)|, since

|g(z)− gT (z)| =
∣∣∣∣∫ ∞
T

f(t)e−zt dt

∣∣∣∣
≤ B

∫ ∞
T

|e−zt| dt

= B
e−Re(z)T

Re(z)
,

and ∣∣∣∣ezT (1 +
z2

R2

)
1

z

∣∣∣∣ = eRe(z)T 2 Re(z)

R2
.

As the semi-circle C+ has length πR the absolute value of the integral
over C+ is bounded by B/R.

Now consider the integral over C−, where the real part is negative.
We deal with g(z) and gT (z) separately. Since gT (z) is entire, that is,
everywhere holomorphic, we can replace C− by the semi-circle C ′−, the
other half of C+. We get the same bound as before, since

|gT (z)| =
∣∣∣∣∫ T

0

f(t)e−zt dt

∣∣∣∣
≤ B

∫ T

−∞
|e−zt| dt

= B
e−Re(z)T

|Re(z)|
.

Thus the integral of gT (z) over C− goes to zero as R goes to infinity.
Finally the remaining integral over C− also goes to zero as R goes

to infinity, as the integrand is the product of

g(z)

z

(
1 +

z2

R2

)
,
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which is independent of T and the function ezT , which goes to zero
rapidly as T goes to infinity.

Thus

lim sup
T→∞

|g(0)− gT (0)| ≤ 2B

R
.

Now let R go to infinity. �
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