
1. Multiplicative functions

The focus of Math 104B will be on giving upper and lower bounds
for functions defined on the natural numbers. In Math 104A the focus
was on using algebra to solve problems in number theory. By contrast
in Math 104B we will use analysis instead.

We recall the definition of two closely related functions

Definition 1.1. We define two functions

τ : N −→ N and σ : N −→ N

as follows: if n ∈ N then τ(n) is the number of divisors of n and σ(n)
is the sum of the divisors of n.

We can write down the definitions more formally:

τ(n) =
∑
d|n

1 and σ(n) =
∑
d|n

d.

For example, consider n = 6. The divisors of 6 are 1, 2, 3, and 6.
Thus

τ(6) = 4 and σ(6) = 1 + 2 + 3 + 6 = 12.

We recall the definition of a multiplicative function:

Definition 1.2. We say that a function

f : N −→ N

is multiplicative if f(mn) = f(m)f(n), whenever m and n coprime.

To compute a multiplicative function f , by the fundamental theorem
of arithmetic, it suffices to know the value of f(pe), where p is a prime
number.

We have already seen that the Euler ϕ-function is multiplicative.

Theorem 1.3. The functions σ and τ are multiplicative.

Proof. Suppose that m and n are two coprime natural numbers. Then
every divisor d of mn is uniquely of the form d1d2, where d1 divides m
and d2 divides n.

It follows that the number of divisors of mn is equal to the number
of divisors of m multiplied by the number of divisors of n, that is,
τ(mn) = τ(m)τ(n). In particular τ is multiplicative.

1



On the other hand,

σ(m)σ(n) =

∑
d1|m

d1

∑
d2|n

d2


=

∑
d1|m,d2|n

d1d2

=
∑
d|mn

d

= σ(mn). �

Lemma 1.4. If p is a prime and e is a natural number then

τ(pe) = 1 + e and σ(pe) =
pe+1 − 1

p− 1
.

Proof. The divisors of pe are 1, p, p2, . . . , pe−1, pe. The number of
divisors is then 1 + e so that

τ(pe) = 1 + e

and the sum of the divisors is

σ(pe) = 1 + p+ p2 + p3 + · · ·+ pe−1 + pe

=
pe+1 − 1

p− 1
. �

Theorem 1.5. If

n = pe11 p
e2
2 . . . perr

is the prime factorisation of the natural number n then

τ(n) =
r∏

i=1

(1 + ei) and σ(n) =
r∏

i=1

peii − 1

pi − 1
.

Proof. Immediate from (1.3) and (1.4). �

In fact there is a way to generate lots of multiplicative functions of
which σ and τ are special cases.

Theorem 1.6. If f : N −→ N is a multiplicative function then the
function F : N −→ N defined by

F (n) =
∑
d|n

f(d)

is also multiplicative.
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Proof. Suppose that m and n are two coprime natural numbers. Then
every divisor d of mn is uniquely of the form d1d2, where d1 divides m
and d2 divides n.

Therefore

F (m)F (n) =

∑
d1|m

f(d1)

∑
d2|n

f(d2)


=

∑
d1|m,d2|n

f(d1)f(d2)

=
∑

d1|m,d2|n

f(d1d2)

=
∑
d|mn

f(d)

= F (mn). �

Corollary 1.7. σ and τ are multiplicative functions.

Proof. Apply (1.6) to the functions f(n) = 1 and f(n) = n, which are
both easily seen to be multiplicative. �

Definition 1.8. A natural number n is called perfect if the sum of
the divisors, apart from n, is equal to n.

Thus 6 is perfect as 6 = 1 + 2 + 3. Note that n is perfect if and only
if σ(n) = 2n.

Theorem 1.9. Let n be an even natural number.
Then n is perfect if and only if n = 2p−1(2p − 1) where both p and

2p − 1 are prime numbers.

Proof. One direction is straightforward. If n = 2p−1(2p−1) where both
p and 2p − 1 are prime then

σ(n) = σ(2p−1(2p − 1))

= σ(2p−1)σ(2p − 1)

=
2p − 1

2− 1
2p

= 2p(2p − 1)

= 2n,

so that n is perfect.
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Now suppose that n is perfect. We may write n = 2k−1m, where m
is odd and k ≥ 2 as n is even. We have

2n = σ(n)

= σ(2k−1m)

= σ(2k−1)σ(m)

= (2k − 1)σ(m).

Thus

(2k − 1)σ(m) = 2km.

In particular (2k − 1)|m. Thus we may write m = (2k − 1)l, for some
natural number l, in which case

σ(m) = 2kl.

Now both l and m are divisors of m so that

2kl = σ(m)

≥ m+ l

= (2k − 1)l + l

= 2kl.

It follows that l and m are the only divisors of m, so that m is prime
and l = 1. It follows that m = 2k − 1 is prime, which only happens if
k is prime. �

There are two natural questions about perfect numbers.

Question 1.10. Are there odd perfect numbers?

It has been checked by computer that there are no odd perfect num-
bers less than 10300; we know that if n is an odd perfect number not
divisible by 3, 5 or 7 then n is divisible by at least 27 different primes;
every odd perfect number is congruent to 1 modulo 12 or 9 modulo 36.
Presumably there are no odd primes but the answer to (1.10) is not
known.

Question 1.11. Are there infinitely many perfect numbers?

If we assume that there are only finitely many odd perfect numbers
(for example, if there are none) this is equivalent to asking if there are
infinitely many primes p such that

2p − 1,
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is prime. Recall that any such prime is called a Mersenne prime. To
date we know the existence of 50 Mersenne primes. The primes

3, 7, 31, and 127.

are the first four Mersenne primes. The 50th Mersenne prime is

277,232,917 − 1.

It has 23, 249, 425 digits, and is the largest known prime number. It
was discovered on Dec 26th, 2017.
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