
FINAL EXAM

MATH 104B, UCSD, WINTER 18

You have three hours.

There are 9 problems, and the total number of

points is 125. Show all your work. Please make

your work as clear and easy to follow as possible.

Name:

Signature:

Student ID #:

Problem Points Score

1 30

2 10

3 15

4 10

5 15

6 10

7 10

8 15

9 10

10 10

11 10

12 10

13 10

14 10

Total 125
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1. (30pts) Give the definition of
(i) τ(n).

The number of divisors of n.

(ii) σ(n).

The sum of the divisors of n.

(iii) f(x) = O(g(x)).

There is a constant M > 0 such that

|f(x)|
g(x)

< M,

for x sufficiently large.
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(iv) Euler’s constant.

Euler’s constant γ is the real number such that
n
∑

k=1

1

k
= log n+ γn+O

(

1

n

)

.

(v) completely multiplicative.

A function f : N −→ C is completely multiplicative if

f(mn) = f(m)f(n),

for all m and n.

(vi) Twin primes.

Two primes p and q are twin primes if q = p+ 2 (or vice-versa).
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2. (10pts) (i) Show that τ(n) is multiplicative.

Suppose that m and n are coprime. Then d divides mn if and only if
we may write d = d1d2, where d1 divides m and d2 divides n. Thus the
number of divisors of mn is the number of divisors of m multiplied by
the number of divisors of n,

τ(mn) = τ(m)τ(n).

(ii) Find an expression for σk(n) the sum of the kth powers of the
divisors of n.

Note that
σk(n) =

∑

d|n
dk.

As m −→ mk is multiplicative, it follows that σk is multiplicative. If
n = pe is a power of a prime then

σk(n) =
e
∑

i=0

pe

=
pe+1 − 1

p− 1
.

If n = pe11 pe22 . . . pekk is the prime factorisation of n then

σk(n) =
k
∏

i=1

pei+1
i − 1

pi − 1
.
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3. (15pts) (i) State the Möbius inversion formula.
If

F (n) =
∑

d|n
f(d) then f(n) =

∑

d|n
µ(d)F (n/d).

(ii) Let

Λ(n) =

{

log p if n is a power of any prime p,

0 otherwise.

Show that
log n =

∑

d|n
Λ(d)

Call a function f : N −→ N logarithmic if f(mn) = f(m) + f(n),
whenever m and n are coprime. Note that both sides are logarithmic
and so we are reduced to the case that n = pe is a power of a prime.
In this case

∑

d|n
Λ(d) =

e
∑

i=0

Λ(pi)

= e log p

= log pe

= log n.

(iii) Show that
∑

d|n
µ(d) log d = −Λ(n).

By Möbius inversion we have

Λ(n) =
∑

d|n
µ(d) log n/d

=
∑

d|n
log nµ(d)−

∑

d|n
µ(d) log d

= log n(
∑

d|n
µ(d))−

∑

d|n
µ(d) log d

= −
∑

d|n
µ(d) log d.

4



4. (10pts) If n is a natural number, p is a prime and n! = pem, where
m is a natural number coprime to p then prove that

e = x

n

p
y+ x

n

p2
y+ x

n

p3
y+ . . . .

Note that

e =
∞
∑

i=1

iei,

where ei is the number of integers from 1 to n divisible by pi but not
pi+1. Let fi be the number of integers from 1 to n divisible by pi. Note
that ei = fi − fi+1 so that

e =
∞
∑

i=1

iei

=
∞
∑

i=1

i(fi − fi+1)

=
∞
∑

i=1

ifi −
∞
∑

i=1

ifi+1

=
∞
∑

i=1

ifi −
∞
∑

i=1

(i− 1)fi

=
∞
∑

i=1

fi.

On the other hand, of the numbers from 1 to n, there are

fi = x

n

pi
y

numbers divisible by pi.
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5. (15pts) (i) Let r be a natural number and let x be a real number.
Show that

π(x) ≤ r + x

r
∏

i=1

(

1− 1

pi

)

+ 2r.

Let A(x, r) be the number of integers up to x divisible by the first r
primes. Then

π(x) ≤ r + A(x, r),

and by inclusion-exclusion

A(x, r) = xxy−
r
∑

i=1

x

x

p i

y+
∑

i<j

x

x

pipj
y+ . . . .

If we ignore the round down then we introduce an error of at most 2r.
Note that

x

r
∏

i=1

(

1− 1

pi

)

= x

(

−
r
∑

i=1

1

p i

+
∑

i<j

1

pipj
+ . . .

)

= x−
r
∑

i=1

x

p i

+
∑

i<j

x

pipj
+ . . . .

Putting all of this together we get

π(x) ≤ r + x
r
∏

i=1

(

1− 1

pi

)

+ 2r.

(ii) If x ≥ 2 then
∏

p≤x

(

1− 1

p

)

<
1

log x
.

We have
(

1− 1

p

)−1

= 1 +
1

p
+

1

p2
+ . . . .

As the RHS is absolutely convergent if multiply out all of these terms
we get the sum of the reciprocral of every natural number divisible by
only the first r primes. These include every number up to x.
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∏

p≤x

(

1− 1

p

)−1

=
∑

k≤x

1

k
.

If we view the last term as a Riemann sum then we get

∑

k≤x

1

k
=

∫

xxy+1

1

du

u
> log x.

(iii) Show that

π(x) ≪ x

log log x
.

By (i) and (ii)

π(x) ≤ 2r+1 +
x

log pr
.

As pr ≥ r it follows that

π(x) ≤ 2r+1 +
x

log r
.

Let r = logxxy+ 1. Then

π(x) <
x

log log x
+ 4 · 2log x

<
x

log log x
+O(xlog 2).

As log 2 < 1 it follows that

O(xlog 2) = o

(

x

log log x

)

.

Thus
π(x) ≪ x

log log x
.
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6. (10pts) Let n be an integer and let p be a prime. If rp is the unique
integer such that

prp ≤ 2n < prp+1,

then prove that
∏

n<p≤2n

p

∣

∣

∣

∣

(2n)!

n!n!
and

(2n)!

n!n!

∣

∣

∣

∣

∏

p≤2n

prp .

If p is a prime and p ≤ 2n then p divides (2n)!. If p > n then p does
not divide n!. It follows that

∏

n<p≤2n

p

∣

∣

∣

∣

(2n)!

n!n!
.

Note that
rp
∑

m=1

x

2n

pm
y

is the exponent of p which divides (2n)!. On the other hand

2

rp
∑

m=1

x

n

pm
y

is the exponent of p which divides n!n!. The difference
rp
∑

m=1

x

2n

pm
y− 2

rp
∑

m=1

x

n

pm
y =

rp
∑

m=1

x

2n

pm
y− 2x

n

pm
y

≤
rp
∑

m=1

1

= rp.

is the exponent of p which divides

(2n)!

n!n!
.

Thus
(2n)!

n!n!

∣

∣

∣

∣

∏

p≤2n

prp .
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7. (10pts) Show that if s > 1 then

∏

p

1

1− p−s
=

∞
∑

k=1

1

ks
.

Call the RHS ζ(s).
If we expand the RHS for all of the primes up to x we get

∏

p≤x

(

1

1− p−s

)

=
∏

p≤x

(

1 +
1

ps
+

1

p2s
+ . . .

)

.

The product on the right is a finite product, over finitely many primes,
of absolutely convergent geometric series. Thus we may rearrange the
terms of the sum in any convenient order. If we expand the product
we then get

∏

p≤x

(

1

1− p−s

)

=
∑

k:p|k =⇒ p≤x

1

ks

=
∑

k≤x

1

ks
+

∑

k>x:p|k =⇒ p≤x

1

ks

= Σ1(x) + Σ2(x).

As the series ∞
∑

k=1

1

ks

converges, it follows that Σ1(x) converges to ζ(s) and Σ2(x) tends to
zero.
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8. (15pts) (i) State Bertrand’s hypothesis.

If n is a natural number then there is a prime number p such that
n < p ≤ 2n.

(ii) Show that every integer n > 6 is the sum of distinct primes (Hint:
show that every integer 6 < n ≤ 19 is a sum of distinct primes p < 13).

Note that every integer 7 ≤ m ≤ 19 is a sum of distinct primes p < 13

7 = 7, 8 = 5+3, 9 = 7+2, 10 = 7+3, 11 = 11, 12 = 7+5, 13 = 11+2,

14 = 11+3, 15 = 7+5+3, 16 = 11+5, 17 = 7+5+3+2, 18 = 11+7, 19 = 11+5+3.

Suppose that 19 < m ≤ 26. Then 7 ≤ m − 13 ≤ 13. Thus m − 13
is a sum of primes less than 13 and adding 13, m is a sum of distinct
primes. Thus every integer 7 ≤ m ≤ 26 is a sum of distinct primes
p ≤ 13.
Now suppose that we know every integer 7 ≤ m ≤ 2p is a sum of
distinct primes at most p. Pick a prime p < q ≤ 2p. If 2p < m ≤ 2q
then m− q ≤ q ≤ 2p. In this case m− q is a sum of distinct primes less
than p and adding on q, m is a sum of distinct primes at most q > p.
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9. (10pts) Show that the number of lattice points inside the circle x2 +
y2 ≤ n is equal to

πn+O(
√
n).

The number of lattice points is
∑

|x|≤√
n

∑

|y|≤
√
n−x2

1 = 2
∑

|x|≤√
n

x

√
n− x2

y

= 4
∑

0≤x≤√
n

√
n− x2 +O(

√
n).

To estimate the last sum we use Riemann sums:
∑

0<x≤√
n

√
n− x2 ≤

∫ n

0

√
n− t2 dt ≤

∑

0≤x<
√
n

√
n− x2.

As
∫ n

0

√
n− t2 dt = πn

and the difference between the upper and low sum is bounded by
√
n,

the number of lattice points inside the circle x2 + y2 ≤ n is

πn+O(
√
n).
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Bonus Challenge Problems

11. (10pts) State and prove the formula for partial summation.

Suppose that λ1, λ2, . . . is a sequence of reals such that

λ1 ≤ λ2 ≤ . . .

and the limit is infinity. Let c1, c2, . . . be any sequence of complex
numbers and let f(x) be a function whose derivative is continuous for
x ≥ λ1.
If

C(x) =
∑

λn≤x

cn,

where the sum is over all n such that λn ≤ x, then
∑

λn≤x

cnf(λn) = C(x)f(x)−
∫ x

λ1

C(t)f ′(t) dt.

If ν is the largest index such that λν ≤ x, we have
∑

λn≤x

cnf(λn) = C(λ1)f(λ1) + (C(λ2)− C(λ1))f(λ2) + · · ·+ (C(λν)− C(λν−1))f(λn)

= C(λ1)(f(λ1)− f(λ2)) + · · ·+ C(λν−1)(f(λν)− f(x)) + C(λλν
)f(x)

= −
∫ x

λ1

C(t)f ′(t) dt+ C(x)f(x),

since C(t) is constant over the intervals (λi−1, λi) and (λν , x).

12



11. (10pts) Show that
n
∑

m=1

τ(m) = n log n+ (2γ − 1)n+O(
√
n).

We have
n
∑

m=1

τ(m) =
n
∑

m=1

∑

d|m
1

=
n
∑

d=1

n/d
∑

m=1

1

=
n
∑

d=1

x

n

d
y.

Geometrically, the sum on the RHS is the number of lattice points
(x, y) where x and y are natural numbers, on or below the hyperbola
xy = n, since if we fix x the number of 1 ≤ y ≤ n/x is precisely xn/xy.
By symmetry the number of lattice points (x, y) with x > 0, y > 0 and
xy ≤ n is equal to twice the number of lattice points x > 0, y > x and
xy ≤ n plus the number of lattice points x > 0, x = y and xy ≤ n.
Hence

n
∑

m=1

τ(m) = 2





√
n

∑

x=1

x

n

x
y− x



+ x

√
ny

= 2n





√
n

∑

x=1

1

x



+O(
√
n)− 2

x

√
ny(x

√
ny+ 1)

2

= 2n(log(
√
n) + γ +O(1/

√
n))− n+O(

√
n)

= n log n+ (2γ − 1)n+O(
√
n).
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12. (10pts) Show that
∑

n≤x

τ(n)

n
=

1

2
log2 x+ 2γx+O(1).

We apply partial summation to

λn = n cn = τ(n) and f(x) =
1

x
.

We get
∑

n≤x

τ(n)

n
=

∑

n≤x τ(n)

x
+

∫ x

1

∑

n≤t τ(n)

t2
dt.

Now
∑

n≤x

τ(n) = x log x+ (2γ − 1)x+O(x1/2).

Thus
∫ x

1

∑

n≤t τ(n)

t2
dt =

∫ x

1

log t

t
dt+ (2γ − 1)

∫ x

1

1

t
dt+

∫ x

1

O(t1/2)

t2
dt

=

[

1

2
log2 t

]x

1

+ (2γ − 1)

[

log t

]x

1

+O

(∫ ∞

1

1

t3/2
dt

)

=
1

2
log2 x+ (2γ − 1) log x+O(1).

Hence
∑

n≤x

τ(n)

n
=

1

2
log2 x+ 2γ log x+O(1).
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13. (10pts) Show that

lim
s→1+

∏

q

(1− q−s)−1 = ∞,

where the product ranges over the primes q congruent to one modulo
four.

See lecture 9.
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14. (10pts) Prove Brun’s theorem.

See lecture 15.
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