MODEL ANSWERS TO THE NINTH HOMEWORK

9.3.1. $\sqrt{2}=1+\sqrt{2}-1$, so that $a_{0}=1$ and

$$
\begin{aligned}
\xi_{1} & =\frac{1}{\sqrt{2}-1} \\
& =\sqrt{2}+1 \\
& =2+\sqrt{2}-1,
\end{aligned}
$$

so that $a_{1}=2$. It follows that

$$
\sqrt{2}=[1 ; \overline{2}] .
$$

$\sqrt{3}=1+\sqrt{3}-1$, so that $a_{0}=1$ and

$$
\begin{aligned}
\xi_{1} & =\frac{1}{\sqrt{3}-1} \\
& =\frac{\sqrt{3}+1}{2} \\
& =1+\frac{\sqrt{3}-1}{2} .
\end{aligned}
$$

It follows that $a_{1}=1$ and

$$
\begin{aligned}
\xi_{2} & =\frac{2}{\sqrt{3}-1} \\
& =\sqrt{3}+1 \\
& =2+\sqrt{3}-1 .
\end{aligned}
$$

It follows that

$$
\sqrt{3}=[1 ; \overline{1,2}] .
$$

$\sqrt{5}=2+\sqrt{5}-2$, so that $a_{0}=2$ and

$$
\begin{aligned}
\xi_{1} & =\frac{1}{\sqrt{5}-2} \\
& =\sqrt{5}+2 \\
& =4+\sqrt{5}-2 .
\end{aligned}
$$

It follows that

$$
\sqrt{5}=\underset{1}{=} 2 ; \overline{4}] .
$$

$\sqrt{6}=2+\sqrt{6}-2$, so that $a_{0}=2$ and

$$
\begin{aligned}
\xi_{1} & =\frac{1}{\sqrt{6}-2} \\
& =\frac{\sqrt{6}+2}{2} \\
& =2+\frac{\sqrt{6}-2}{2}
\end{aligned}
$$

It follows that $a_{1}=2$ and

$$
\begin{aligned}
\xi_{2} & =\frac{2}{\sqrt{6}-2} \\
& =\sqrt{6}+2 \\
& =4+\sqrt{6}-2 .
\end{aligned}
$$

It follows that

$$
\sqrt{6}=[2 ; \overline{2,4}] .
$$

$\sqrt{7}=2+\sqrt{7}-2$, so that $a_{0}=2$ and

$$
\begin{aligned}
\xi_{1} & =\frac{1}{\sqrt{7}-2} \\
& =\frac{\sqrt{7}+2}{3} \\
& =1+\frac{\sqrt{7}-1}{3}
\end{aligned}
$$

It follows that $a_{1}=1$ and

$$
\begin{aligned}
\xi_{2} & =\frac{3}{\sqrt{7}-1} \\
& =\frac{\sqrt{7}+1}{2} \\
& =1+\frac{\sqrt{7}-1}{2}
\end{aligned}
$$

It follows that $a_{2}=1$ and

$$
\begin{aligned}
\xi_{3} & =\frac{2}{\sqrt{7}-1} \\
& =\frac{\sqrt{7}+1}{3} \\
& =1+\frac{\sqrt{7}-2}{3} .
\end{aligned}
$$

It follows that $a_{3}=1$ and

$$
\begin{aligned}
\xi_{3} & =\frac{3}{\sqrt{7}-2} \\
& =\sqrt{7}+2 \\
& =4+\sqrt{7}-2 .
\end{aligned}
$$

It follows that

$$
\sqrt{7}=[2 ; \overline{1,1,1,4}]
$$

$\sqrt{8}=2 \sqrt{2}=2+2 \sqrt{2}-2$, so that $a_{0}=2$ and

$$
\begin{aligned}
\xi_{1} & =\frac{1}{2(\sqrt{2}-1)} \\
& =\frac{\sqrt{2}+1}{2} \\
& =1+\frac{(\sqrt{2}-1)}{2}
\end{aligned}
$$

It follows that $a_{1}=1$ and

$$
\begin{aligned}
\xi_{2} & =\frac{2}{(\sqrt{2}-1)} \\
& =2(\sqrt{2}+1) \\
& =4+2(\sqrt{2}-1)
\end{aligned}
$$

It follows that

$$
\sqrt{8}=[2 ; \overline{1,4}]
$$

$\sqrt{10}=3+(\sqrt{10}-3)$, so that $a_{0}=3$ and

$$
\begin{aligned}
\xi_{1} & =\frac{1}{\sqrt{10}-3} \\
& =\sqrt{10}+3 \\
& =6+\sqrt{10}-3
\end{aligned}
$$

It follows that

$$
\sqrt{10}=[3 ; \overline{6}]
$$

$\sqrt{11}=3+(\sqrt{11}-3)$, so that $a_{0}=3$

$$
\begin{aligned}
\xi_{1} & =\frac{1}{\sqrt{11}-3} \\
& =\frac{\sqrt{11}+3}{2} \\
& =3+\frac{\sqrt{11}-3}{2}
\end{aligned}
$$

It follows that $a_{1}=3$ and

$$
\begin{aligned}
\xi_{2} & =\frac{2}{\sqrt{11}-3} \\
& =\sqrt{11}+3 \\
& =6+\sqrt{11}-3 .
\end{aligned}
$$

It follows that

$$
\sqrt{11}=[3 ; \overline{3,6}] .
$$

$\sqrt{12}=3+(2 \sqrt{3}-3)$, so that $a_{0}=3$ and

$$
\begin{aligned}
\xi_{1} & =\frac{1}{2 \sqrt{3}-3} \\
& =\frac{2 \sqrt{3}+3}{3} \\
& =2+\frac{2 \sqrt{3}-3}{3} .
\end{aligned}
$$

It follows that $a_{1}=2$ and

$$
\begin{aligned}
\xi_{2} & =\frac{3}{2 \sqrt{3}-3} \\
& =2 \sqrt{3}+3 \\
& =6+2 \sqrt{3}-3 .
\end{aligned}
$$

It follows that

$$
\sqrt{12}=[3 ; \overline{2,6}] .
$$

$\sqrt{13}=3+(\sqrt{13}-3)$, so that $a_{0}=3$ and

$$
\begin{aligned}
\xi_{1} & =\frac{1}{\sqrt{13}-3} \\
& =\frac{\sqrt{13}+3}{4} \\
& =1+\frac{\sqrt{13}-1}{4} .
\end{aligned}
$$

It follows that $a_{1}=1$ and

$$
\begin{aligned}
\xi_{2} & =\frac{4}{\sqrt{13}-1} \\
& =\frac{\sqrt{13}+1}{3} \\
& =1+\frac{\sqrt{13}-2}{3} .
\end{aligned}
$$

It follows that $a_{2}=1$ and

$$
\begin{aligned}
\xi_{3} & =\frac{3}{\sqrt{13}-2} \\
& =\frac{\sqrt{13}+2}{3} \\
& =1+\frac{\sqrt{13}-1}{3} .
\end{aligned}
$$

It follows that $a_{3}=1$ and

$$
\begin{aligned}
\xi_{4} & =\frac{3}{\sqrt{13}-1} \\
& =\frac{\sqrt{13}+1}{4} \\
& =1+\frac{\sqrt{13}-3}{4} .
\end{aligned}
$$

It follows that $a_{4}=1$ and

$$
\begin{aligned}
\xi_{5} & =\frac{4}{\sqrt{13}-3} \\
& =\sqrt{13}+3 \\
& =6+\sqrt{13}-3 .
\end{aligned}
$$

It follows that

$$
\sqrt{13}=[3 ; \overline{1,1,1,1,6}] .
$$

$\sqrt{14}=3+(\sqrt{14}-3)$, so that $a_{0}=3$ and

$$
\begin{aligned}
\xi_{1} & =\frac{1}{\sqrt{14}-3} \\
& =\frac{\sqrt{14}+3}{5} \\
& =1+\frac{\sqrt{14}-2}{5} .
\end{aligned}
$$

It follows that $a_{1}=1$ and

$$
\begin{aligned}
\xi_{2} & =\frac{5}{\sqrt{14}-2} \\
& =\frac{\sqrt{14}+2}{2} \\
& =2+\frac{\sqrt{14}-2}{2} .
\end{aligned}
$$

It follows that $a_{2}=2$ and

$$
\begin{aligned}
\xi_{3} & =\frac{2}{\sqrt{14}-2} \\
& =\frac{\sqrt{14}+2}{5} \\
& =1+\frac{\sqrt{14}-3}{5} .
\end{aligned}
$$

It follows that $a_{3}=1$ and

$$
\begin{aligned}
\xi_{3} & =\frac{5}{\sqrt{14}-3} \\
& =\sqrt{14}+3 \\
& =6+\sqrt{14}-3 .
\end{aligned}
$$

It follows that

$$
\sqrt{14}=[3 ; \overline{1,2,1,6}] .
$$

$\sqrt{15}=3+(\sqrt{15}-3)$, so that $a_{0}=3$ and

$$
\begin{aligned}
\xi_{1} & =\frac{1}{\sqrt{15}-3} \\
& =\frac{\sqrt{15}+3}{6} \\
& =1+\frac{\sqrt{15}-3}{6} .
\end{aligned}
$$

It follows that $a_{1}=1$ and

$$
\begin{aligned}
\xi_{2} & =\frac{6}{\sqrt{15}-3} \\
& =\sqrt{15}+3 \\
& =6+\sqrt{15}-3 .
\end{aligned}
$$

It follows that

$$
\sqrt{15}=\underset{6}{[3} ; \overline{1,6}] .
$$

9.3.2. As $\xi<\theta<\eta$, it follows that

$$
a_{0}=\llcorner\xi\lrcorner \leq\llcorner\theta\lrcorner \leq\llcorner\eta\lrcorner=a_{0} .
$$

Thus

$$
a_{0}=\llcorner\theta\lrcorner .
$$

Moreover, it then follows that

$$
\{\xi\}<\{\theta\}<\{\eta\} .
$$

Taking reciprocals

$$
\eta_{1}<\theta_{1}<\xi_{1}
$$

As the partial quotients of η_{1} and ξ_{1} are $a_{1}, a_{2}, \ldots, a_{n}$, we are done by induction on n.
9.3.3. We proceed by induction on $n . q_{1}=a_{1}$ and so we omit no pairs in this case. Suppose the result holds for all $k<n$, where $n>1$. We have

$$
q_{n}=a_{n} q_{n-1}+q_{n-2} .
$$

q_{n-2} is the product of $a_{1} a_{2} \ldots a_{n}$, omitting some pairs of consecutive integers of $a_{1} a_{2} \ldots a_{n-2}$, including $a_{n-1} a_{n-2} . a_{n} q_{n-1}$ is the product of $a_{1} a_{2} \ldots a_{n}$ omitting some pairs of consecutive integers of $a_{1} a_{2} \ldots a_{n-1}$, but never omitting a_{n}. This completes the induction.
9.3.4.

$$
\begin{aligned}
u & =[2 ; 1,2,1,1,4,1,1] \\
& =[2 ; 1,2,1,1,4,2] \\
& =[2 ; 1,2,1,1,9 / 2] \\
& =[2 ; 1,2,1,11 / 9] \\
& =[2 ; 1,2,20 / 11] \\
& =[2 ; 1,51 / 20] \\
& =[2 ; 71 / 51] \\
& =\frac{193}{71} \\
& =2.71830985915 .
\end{aligned}
$$

$$
\begin{aligned}
l & =[2 ; 1,2,1,1,4,1,1,1] \\
& =[2 ; 1,2,1,1,4,1,2] \\
& =[2 ; 1,2,1,1,4,3 / 2] \\
& =[2 ; 1,2,1,1,14 / 3] \\
& =[2 ; 1,2,1,17 / 14] \\
& =[2 ; 1,2,31 / 17] \\
& =[2 ; 1,79 / 31] \\
& =[2 ; 110 / 79] \\
& =\frac{299}{110} \\
& =2.7 \overline{18} .
\end{aligned}
$$

The general real number ξ will have a continued fraction which starts like

$$
[2 ; 1,2,1,1,4,1,1]
$$

if and only if

$$
\xi \in[2.7 \overline{18}, 2.71830985915]
$$

9.3.5. There is no harm in assuming that $\delta<1 / 2$. In particular if

$$
\left|\xi-\frac{p}{q}\right|<\frac{\delta}{q^{2}}
$$

then $p / q=p_{k} / q_{k}$ is a convergent of the continued fraction expansion of ξ. In this case

$$
\frac{1}{q_{k}\left(q_{k}+q_{k+1}\right)}<\left|\xi-\frac{p_{k}}{q_{k}}\right|<\frac{1}{q_{k} q_{k+1}}
$$

As

$$
q_{k+1}=a_{k+1} q_{k}+q_{k-1}
$$

It follows that

$$
a_{k+1} q<q^{2}<\left(a_{k+1}+1\right) q^{2}
$$

If $a_{k}<A$ for some A then

$$
\left|\xi-\frac{p}{q}\right|>\frac{\delta}{q^{2}}
$$

for

$$
\delta=\frac{1}{\underset{8}{A+1}}
$$

Conversely if

$$
\left|\xi-\frac{p}{q}\right|>\frac{\delta}{q^{2}}
$$

then

$$
a_{k}<\frac{1}{\delta}
$$

is bounded.
9.3.7. If $x_{k+1}>q_{k}^{\omega}$ then $a_{k+1} \geq q_{k}^{\omega}$ and so

$$
q_{k+1}=a_{k+1} q_{k}+q_{k-1}>q_{k}^{\omega+1}
$$

In this case

$$
\left|x-\frac{p_{k}}{q_{k}}\right|<\frac{1}{q_{k}^{\omega+2}} .
$$

Therefore x is Liouville number.
If x is a Liouville number and

$$
\left|x-\frac{p}{q}\right|<\frac{1}{q^{n}}
$$

then p / q has to be a convergent. It follows that

$$
q_{k}\left(q_{k}+q_{k+1}\right)>q_{k}^{n}
$$

But then

$$
q_{k+1}>\frac{1}{2} q_{k}^{n} .
$$

9.4.2. (a) We have

$$
\begin{aligned}
0 & <\xi-\bar{\xi} \\
& =2 \frac{\sqrt{d}}{B} .
\end{aligned}
$$

Therefore $B>0$. On the other hand

$$
\begin{aligned}
0 & <\xi+\bar{\xi} \\
& =2 \frac{A}{B} .
\end{aligned}
$$

Therefore $A>0$.
As $\xi>1$ we have

$$
\begin{array}{rll}
\sqrt{d}+A>B & \text { so that } & B<\sqrt{d}+A \\
\text { As }-1<\bar{\xi}<0 \text { we have } & & \\
-B<A-\sqrt{d}<0 & \text { so that } & \sqrt{d}-B<A<\sqrt{d} .
\end{array}
$$

Putting all of this together gives

$$
0<A<\sqrt{d} \quad \text { and } \quad 0<\underset{9}{\sqrt{d}}-A<B<\sqrt{d}+A<2 \sqrt{d} .
$$

(b) As $B<\sqrt{d}+A$ it follows that $\xi>1$. As

$$
\sqrt{d}-B<A<\sqrt{d} \quad \text { so that } \quad-B<A-\sqrt{d}<0
$$

and so $-1<\bar{\xi}<0$.
(c) We already now that $\sqrt{d}+\llcorner\sqrt{d}\lrcorner$ is reduced and so there is at least one. As $0<A<\sqrt{d}$ it follows that there are only finitely many possible choices for A. As $0<B<2 \sqrt{d}$ it follows that there are only finitely many possible choices for B. 9.5.1.

$$
\sqrt{7}=[2 ; \overline{1,1,1,4}] .
$$

The convergents are

$$
\begin{array}{llllllllll}
\frac{2}{1} & \frac{3}{1} & \frac{5}{2} & \frac{8}{3} & \frac{37}{14} & \frac{45}{17} & \frac{82}{31} & \frac{127}{48} & \frac{590}{223} & \frac{717}{271}
\end{array}
$$

If we compute $p_{k}^{2}-7 q_{k}^{2}$ we get

$$
2^{2}-7=-3, \quad 3^{2}-7=3, \quad 5^{2}-4 \cdot 7=-3, \quad 8^{2}-9 \cdot 7=1, \quad 37^{2}-14 \cdot 7=-3,
$$

and
$(45)^{2}-(17)^{2} \cdot 7=2, \quad(82)^{2}-31^{2} \cdot 7=-3, \quad(127)^{2}-(48)^{2} \cdot 7=1, \quad(590)^{2}-(223)^{2} \cdot 7=-3$.
Finally we get

$$
(717)^{2}-(271) \cdot 7=2 .
$$

It follows that we can solve

$$
x^{2}-7 y^{2}=N,
$$

where $|N| \leq 2$, if and only if $N=1$ or $N=2$.
9.5.2. We find the continued fraction expansion of $\sqrt{95} . \sqrt{95}=9+$ $\sqrt{95}-9$, so that $a_{0}=9$. It follows that

$$
\begin{aligned}
\xi_{1} & =\frac{1}{\sqrt{95}-9} \\
& =\frac{\sqrt{95}+9}{14} \\
& =1+\frac{\sqrt{95}-5}{14} .
\end{aligned}
$$

It follows that $a_{1}=1$ and

$$
\begin{aligned}
\xi_{2} & =\frac{14}{\sqrt{95}-5} \\
& =\frac{\sqrt{95}+5}{5} \\
& =2+\frac{\sqrt{95}-5}{5} .
\end{aligned}
$$

It follows that $a_{2}=2$ and

$$
\begin{aligned}
\xi_{3} & =\frac{5}{\sqrt{95}-5} \\
& =\frac{\sqrt{95}+5}{14} \\
& =1+\frac{\sqrt{95}-9}{14} .
\end{aligned}
$$

It follows that $a_{3}=1$ and

$$
\begin{aligned}
\xi_{4} & =\frac{14}{\sqrt{95}-9} \\
& =\sqrt{95}+9 \\
& =18+\sqrt{95}-9 .
\end{aligned}
$$

It follows that

$$
\sqrt{95}=[9 ; \overline{1,2,1,18}] .
$$

The partial quotients are

$$
\frac{9}{1} \quad \frac{10}{1} \quad \frac{29}{3} \quad \frac{39}{4} .
$$

If we compute $p_{k}^{2}-95 q_{k}^{2}$ we get
$81-95=-14$
$100-95=5$
$(29)^{2}-9 \cdot 95=-14$
$(39)^{2}-16 \cdot 95=1$.

Thus the fundamental solution is $39+4 \sqrt{95}$.
We find the continued fraction expansion of $\sqrt{74} . \sqrt{74}=8+\sqrt{74}-8$, so that $a_{0}=8$. It follows that

$$
\begin{aligned}
& \xi_{1}=\frac{1}{\sqrt{74}-8} \\
&=\frac{\sqrt{74}+8}{10} \\
&=1+\frac{\sqrt{74}-2}{10} . \\
& 11
\end{aligned}
$$

It follows that $a_{1}=1$ and

$$
\begin{aligned}
\xi_{2} & =\frac{10}{\sqrt{74}-2} \\
& =\frac{\sqrt{74}+2}{7} \\
& =1+\frac{\sqrt{74}-5}{7} .
\end{aligned}
$$

It follows that $a_{2}=1$ and

$$
\begin{aligned}
\xi_{3} & =\frac{7}{\sqrt{74}-5} \\
& =\frac{\sqrt{74}+5}{7} \\
& =1+\frac{\sqrt{74}-2}{7} .
\end{aligned}
$$

It follows that $a_{3}=1$ and

$$
\begin{aligned}
\xi_{4} & =\frac{7}{\sqrt{74}-2} \\
& =\frac{\sqrt{74}+2}{10} \\
& =1+\frac{\sqrt{74}-8}{10} .
\end{aligned}
$$

It follows that $a_{4}=1$ and

$$
\begin{aligned}
\xi_{5} & =\frac{10}{\sqrt{74}-8} \\
& =\sqrt{74}+8 \\
& =16+\sqrt{74}-8 .
\end{aligned}
$$

It follows that

$$
\sqrt{74}=[8 ; \overline{1,1,1,1,16}] .
$$

The partial quotients are

$$
\frac{8}{1} \quad \frac{9}{1} \quad \frac{17}{2} \quad \frac{26}{3} \quad \frac{43}{5}
$$

If we compute $p_{k}^{2}-74 q_{k}^{2}$ we get
$64-74=-10$,
$81-74=7$,
$(17)^{2}-4 \cdot 74$
${ }_{12}=-7$,
$(26)^{2}-9 \cdot 74=10$,
$(43)^{2}-25 \cdot 74=-1$.

Thus $43+5 \sqrt{74}$ is the minimal solution of $x^{2}-74 y^{2}=-1$. Squaring gives the fundamental solution:

$$
(43)^{2}+25 \cdot 74+2 \cdot 43 \cdot 5 \sqrt{74}=3699+430 \sqrt{74}
$$

