MODEL ANSWERS TO THE EIGHTH HOMEWORK

9.1.1.

$$\Phi(t,n) = \sum_{m=1}^{n} \sum_{1 \le a < tm,(a,m)=1} 1$$

$$= \sum_{m=1}^{n} \varphi(t,m)$$

$$= \sum_{m=1}^{n} t\varphi(m) + O(\tau(m))$$

$$= t\Phi(1,n) + O(n \log n).$$

As

$$\Phi(1,n) = \frac{3n^2}{\pi^2} + O(n\log n)$$

it follows that

$$\Phi(t,n) \sim t\Phi(1,n)$$
.

9.1.2. We have

$$\lambda(c) = \sum_{p/q \in [0,1]} l(J_c(p/q))$$

$$= \sum_{q=1}^{\infty} \sum_{\substack{0
$$= \sum_{q=1}^{\infty} \sum_{\substack{0
$$< \sum_{q=1}^{\infty} \frac{2c}{q^{\nu}} \sum_{\substack{0 < p \le q}} 1$$

$$= 2c \sum_{q=1}^{\infty} \frac{1}{q^{\nu-1}},$$$$$$

which converges if $\nu - 1 > 1$ and

$$\lim_{c \to 0} \lambda(c) = 0.$$

9.1.3. Suppose that

$$p^2 - pq - q^2 = 0.$$

and yet $pq \neq 0$. We are going to derive a contradiction. There is no harm in assuming that p and q are coprime. We may write

$$(p-q)(p+q) = pq.$$

If a prime divides p it must divide one of p+q and p-q. But then this prime must divide q, a contradiction. Thus p and q are both ± 1 . In this case the LHS is zero but not the RHS, a contradiction. Thus

$$|p^2 - pq + q^2| \ge 1,$$

if not both p and q are zero.

Let

$$\phi = \frac{1 + \sqrt{5}}{2},$$

the Golden ratio. Fix C > 0, such that

$$C > \sqrt{5}$$
.

Suppose that

$$\phi - \frac{p}{q} = \frac{\delta}{q^2},$$

for some

$$|\delta| < \frac{1}{C}.$$

Multiplying by q we get

$$\frac{\delta}{q} = q\phi - p.$$

This gives

$$\frac{\delta}{q} - \frac{q\sqrt{5}}{2} = \frac{q}{2} - p.$$

Squaring both sides and subtracting

$$\frac{5q^2}{4}$$

gives

$$\frac{\delta^2}{q^2} - \delta\sqrt{5} = p^2 - pq - q^2.$$

The first term on the LHS tends to zero as q tends to infinity. As the second term is bigger than -1 and the RHS has magnitude at least one, it follows that there are only finitely many possible values for q. It follows that there are finitely many possible choices for p/q.

9.2.1.
$$\lfloor \sqrt{3} \rfloor = 1$$
 so that $a_0 = 1$ and

$$\xi_1 = (\sqrt{3} - 1)^{-1}$$

$$= \frac{\sqrt{3} + 1}{2}$$

$$= 1 + \frac{\sqrt{3} - 1}{2}.$$

Thus $a_1 = 1$ and

$$\xi_2 = \left(\frac{\sqrt{3} - 1}{2}\right)^{-1}$$

$$= \frac{2}{\sqrt{3} - 1}$$

$$= \sqrt{3} + 1$$

$$= 2 + \sqrt{3} - 1.$$

Thus $a_2 = 2$ and $\xi_3 = (\sqrt{3} - 1)^{-1}$. As $\xi_3 = \xi_1$ it follows that the continued fraction expansion is periodic:

$$\sqrt{3} = [1; 1, 2, 1, 2, \dots].$$

The first few convergents are:

$$\frac{1}{1}$$
 $\frac{2}{1}$ $\frac{5}{3}$ and $\frac{7}{4}$.

9.2.3. We have

$$\xi = \frac{\sqrt{5} + 1}{2}$$

$$= 1 + \frac{\sqrt{5} - 1}{2}$$

$$= 1 + \frac{1}{\frac{2}{\sqrt{5} - 1}}$$

$$= 1 + \frac{1}{\frac{\sqrt{5} + 1}{2}}$$

$$= 1 + \frac{1}{1 + \frac{\sqrt{5} - 1}{2}}$$

$$= 1 + \frac{1}{1 + \xi}.$$
3

Thus

$$\xi = [1; 1, 1, 1, \dots].$$

9.2.4. $x = 2/5 + \epsilon$ and \mathcal{F}_3 . 1/3 is closer than 1/2 to x but

$$|4/5 - 1| = 1/5$$

and

$$|6/5 - 1| = 1/5.$$

so that x is not a best approximation.

9.2.7. We have

$$x = [a_0; a_1, a_2, \dots, a_k].$$

Since a/b is a best approximation to x and there is no other best approximation with larger denominator, then we must have

$$\frac{a}{b} = \frac{p_k}{q_k},$$

so that $a = p_k$ and $b = q_k$.

Since

$$q_k p_{k-1} - p_k q_{k-1} = (-1)^k$$

it follows that $((-1)^{k+1}cq_{k-1}, (-1)^kcp_{k-1})$ is a solution of

$$ax + by = c$$
.

We have to find the continued fraction expansion of 247/77. We have

$$x = \frac{247}{77}$$
$$= 3 + \frac{16}{77}.$$

Thus $a_0 = 3$ and

$$x_1 = \frac{77}{16}$$
$$= 4 + \frac{13}{16}.$$

Thus $a_1 = 4$ and

$$\xi_2 = \frac{16}{13}$$
$$= 1 + \frac{3}{13}.$$

Thus $a_2 = 1$ and

$$\xi_3 = \frac{13}{3} \\ = 4 + \frac{1}{3}.$$

Thus $a_3 = 3$ and $a_4 = 3$. It follows that

$$\frac{247}{77} = [3; 4, 1, 4, 3].$$

The convergents are:

$$\frac{3}{1}$$
 $\frac{13}{4}$ $\frac{16}{5}$ $\frac{77}{24}$ and $\frac{249}{77}$

This means $p_3 = 77$ and $q_3 = 24$. It follows that a solution of

$$247x + 77y = 31,$$

is

$$x = -24 \cdot 31$$
 and $y = 77 \cdot 31$.

The general solution is then

$$x = -24 \cdot 31 + 77\lambda$$
 and $y = 77 \cdot 31 - 247\lambda$.

9.2.8. Let

$$y_k = [a_k; a_{k-1}, a_{k-2}, \dots, a_2, a_1].$$

We will show by induction on k that

$$y_k = \frac{q_k}{q_{k-1}}.$$

 $p_0 = a_0 \text{ and } q_0 = 1.$

$$q_1 = a_1 \cdot 1 + 0 = a_1.$$

We have

$$q_k = a_k q_{k-1} + q_{k-2}.$$

Thus

$$\frac{q_k}{q_{k-1}} = a_k + \frac{q_{k-2}}{q_{k-1}}$$

$$= a_k + 1/y_{k-1}$$

$$= [a_k; a_{k-1}, a_{k-2}, \dots, a_2, a_1]$$

$$= y_k.$$

9.2.9. Let

$$\frac{a}{b} = [a_0; a_1, a_2, \dots]$$

We will show by induction on k that $a_k = q_{k+1}$ and $\xi_i = r_{i-1}/r_i$. Note that

$$a/b = q_1 + r_1/b,$$

so that $q_1 = \lfloor a/b \rfloor = a_0$ and $b/r_1 = \xi_1$. Note that

$$r_{k-1}/r_k = q_{k+1} + r_{k+1}/r_k$$
.

By induction

$$\xi_k = r_{k-1}/r_k.$$

Thus

$$q_{k+1} = \llcorner \xi_k \lrcorner = a_k.$$

It follows that

$$\xi_{k+1} = r_k/r_{k+1}.$$

This completes the induction.