MODEL ANSWERS TO THE EIGHTH HOMEWORK

9.1.1.

$$
\begin{aligned}
\Phi(t, n) & =\sum_{m=1}^{n} \sum_{1 \leq a<t m,(a, m)=1} 1 \\
& =\sum_{m=1}^{n} \varphi(t, m) \\
& =\sum_{m=1}^{n} t \varphi(m)+O(\tau(m)) \\
& =t \Phi(1, n)+O(n \log n) .
\end{aligned}
$$

As

$$
\Phi(1, n)=\frac{3 n^{2}}{\pi^{2}}+O(n \log n)
$$

it follows that

$$
\Phi(t, n) \sim t \Phi(1, n)
$$

9.1.2. We have

$$
\begin{aligned}
\lambda(c) & =\sum_{p / q \in[0,1]} l\left(J_{c}(p / q)\right) \\
& =\sum_{q=1}^{\infty} \sum_{\substack{0<p \leq q,(p, q)=1}} l\left(J_{c}(p / q)\right) \\
& =\sum_{q=1}^{\infty} \sum_{\substack{0<p \leq q,(p, q)=1}} \frac{2 c}{q^{\nu}} \\
& <\sum_{q=1}^{\infty} \frac{2 c}{q^{\nu}} \sum_{0<p \leq q} 1 \\
& =2 c \sum_{q=1}^{\infty} \frac{1}{q^{\nu-1}},
\end{aligned}
$$

which converges if $\nu-1>1$ and

$$
\lim _{c \rightarrow 0} \lambda(c)=0
$$

9.1.3. Suppose that

$$
p^{2}-p q-q^{2}=0 .
$$

and yet $p q \neq 0$. We are going to derive a contradiction. There is no harm in assuming that p and q are coprime. We may write

$$
(p-q)(p+q)=p q .
$$

If a prime divides p it must divide one of $p+q$ and $p-q$. But then this prime must divide q, a contradiction. Thus p and q are both ± 1. In this case the LHS is zero but not the RHS, a contradiction.
Thus

$$
\left|p^{2}-p q+q^{2}\right| \geq 1
$$

if not both p and q are zero.
Let

$$
\phi=\frac{1+\sqrt{5}}{2}
$$

the Golden ratio. Fix $C>0$, such that

$$
C>\sqrt{5}
$$

Suppose that

$$
\phi-\frac{p}{q}=\frac{\delta}{q^{2}},
$$

for some

$$
|\delta|<\frac{1}{C}
$$

Multiplying by q we get

$$
\frac{\delta}{q}=q \phi-p
$$

This gives

$$
\frac{\delta}{q}-\frac{q \sqrt{5}}{2}=\frac{q}{2}-p
$$

Squaring both sides and subtracting

$$
\frac{5 q^{2}}{4}
$$

gives

$$
\frac{\delta^{2}}{q^{2}}-\delta \sqrt{5}=p^{2}-p q-q^{2}
$$

The first term on the LHS tends to zero as q tends to infinity. As the second term is bigger than -1 and the RHS has magnitude at least one, it follows that there are only finitely many possible values for q. It follows that there are finitely many possible choices for p / q.
9.2.1. $\llcorner\sqrt{3}\lrcorner=1$ so that $a_{0}=1$ and

$$
\begin{aligned}
\xi_{1} & =(\sqrt{3}-1)^{-1} \\
& =\frac{\sqrt{3}+1}{2} \\
& =1+\frac{\sqrt{3}-1}{2} .
\end{aligned}
$$

Thus $a_{1}=1$ and

$$
\begin{aligned}
\xi_{2} & =\left(\frac{\sqrt{3}-1}{2}\right)^{-1} \\
& =\frac{2}{\sqrt{3}-1} \\
& =\sqrt{3}+1 \\
& =2+\sqrt{3}-1
\end{aligned}
$$

Thus $a_{2}=2$ and $\xi_{3}=(\sqrt{3}-1)^{-1}$. As $\xi_{3}=\xi_{1}$ it follows that the continued fraction expansion is periodic:

$$
\sqrt{3}=[1 ; 1,2,1,2, \ldots] .
$$

The first few convergents are:

$$
\frac{1}{1} \quad \frac{2}{1} \quad \frac{5}{3} \quad \text { and } \quad \frac{7}{4} .
$$

9.2.3. We have

$$
\begin{aligned}
& \xi=\frac{\sqrt{5}+1}{2} \\
&=1+\frac{\sqrt{5}-1}{2} \\
&=1+\frac{1}{\frac{2}{\sqrt{5}-1}} \\
&=1+\frac{1}{\frac{\sqrt{5}+1}{2}} \\
&=1+\frac{1}{1+\frac{\sqrt{5}-1}{2}} \\
&=1+\frac{1}{1+\xi} . \\
& 3
\end{aligned}
$$

Thus

$$
\xi=[1 ; 1,1,1, \ldots] .
$$

9.2.4. $x=2 / 5+\epsilon$ and $\mathcal{F}_{3} .1 / 3$ is closer than $1 / 2$ to x but

$$
|4 / 5-1|=1 / 5 \quad \text { and } \quad|6 / 5-1|=1 / 5
$$

so that x is not a best approximation.
9.2.7. We have

$$
x=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k}\right] .
$$

Since a / b is a best approximation to x and there is no other best approximation with larger denominator, then we must have

$$
\frac{a}{b}=\frac{p_{k}}{q_{k}},
$$

so that $a=p_{k}$ and $b=q_{k}$.
Since

$$
q_{k} p_{k-1}-p_{k} q_{k-1}=(-1)^{k}
$$

it follows that $\left((-1)^{k+1} c q_{k-1},(-1)^{k} c p_{k-1}\right)$ is a solution of

$$
a x+b y=c
$$

We have to find the continued fraction expansion of $247 / 77$. We have

$$
\begin{aligned}
x & =\frac{247}{77} \\
& =3+\frac{16}{77} .
\end{aligned}
$$

Thus $a_{0}=3$ and

$$
\begin{aligned}
x_{1} & =\frac{77}{16} \\
& =4+\frac{13}{16} .
\end{aligned}
$$

Thus $a_{1}=4$ and

$$
\begin{aligned}
\xi_{2} & =\frac{16}{13} \\
& =1+\frac{3}{13} .
\end{aligned}
$$

Thus $a_{2}=1$ and

$$
\begin{aligned}
\xi_{3} & =\frac{13}{3} \\
& =4+\frac{1}{3} .
\end{aligned}
$$

Thus $a_{3}=3$ and $a_{4}=3$. It follows that

$$
\frac{247}{77}=[3 ; 4,1,4,3] .
$$

The convergents are:

$$
\frac{3}{1} \quad \frac{13}{4} \quad \frac{16}{5} \quad \frac{77}{24} \quad \text { and } \quad \frac{249}{77} .
$$

This means $p_{3}=77$ and $q_{3}=24$. It follows that a solution of

$$
247 x+77 y=31
$$

is

$$
x=-24 \cdot 31 \quad \text { and } \quad y=77 \cdot 31 .
$$

The general solution is then

$$
x=-24 \cdot 31+77 \lambda \quad \text { and } \quad y=77 \cdot 31-247 \lambda .
$$

9.2.8. Let

$$
y_{k}=\left[a_{k} ; a_{k-1}, a_{k-2}, \ldots, a_{2}, a_{1}\right] .
$$

We will show by induction on k that

$$
y_{k}=\frac{q_{k}}{q_{k-1}} .
$$

$p_{0}=a_{0}$ and $q_{0}=1$.

$$
q_{1}=a_{1} \cdot 1+0=a_{1} .
$$

We have

$$
q_{k}=a_{k} q_{k-1}+q_{k-2} .
$$

Thus

$$
\begin{aligned}
\frac{q_{k}}{q_{k-1}} & =a_{k}+\frac{q_{k-2}}{q_{k-1}} \\
& =a_{k}+1 / y_{k-1} \\
& =\left[a_{k} ; a_{k-1}, a_{k-2}, \ldots, a_{2}, a_{1}\right] \\
& =y_{k} .
\end{aligned}
$$

9.2.9. Let

$$
\frac{a}{b}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right]
$$

We will show by induction on k that $a_{k}=q_{k+1}$ and $\xi_{i}=r_{i-1} / r_{i}$.
Note that

$$
a / b=q_{1}+r_{1} / b
$$

so that $q_{1}=\llcorner a / b\lrcorner=a_{0}$ and $b / r_{1}=\xi_{1}$. Note that

$$
r_{k-1} / r_{k}=q_{k+1}+r_{k+1} / r_{k}
$$

By induction

$$
\xi_{k}=\underset{5}{r_{k-1} / r_{k}}
$$

Thus

$$
q_{k+1}=\left\llcorner\xi_{k}\right\lrcorner=a_{k} .
$$

It follows that

$$
\xi_{k+1}=r_{k} / r_{k+1}
$$

This completes the induction.

