MODEL ANSWERS TO THE SEVENTH HOMEWORK

8.3.4. We have

$$
a+2 \sqrt{a b}+b=(\sqrt{a}+\sqrt{b})^{2} \in \mathbb{Q}(\sqrt{a}+\sqrt{b}) .
$$

It follows that $\sqrt{a b} \in \mathbb{Q}(\sqrt{a}+\sqrt{b})$. It follows that

$$
a \sqrt{b}+b \sqrt{a}=\sqrt{a b}(\sqrt{a}+\sqrt{b}) \in \mathbb{Q}(\sqrt{a}+\sqrt{b}) .
$$

Subtracting $b(\sqrt{a}+\sqrt{b})$ it follows that

$$
\sqrt{b} \in \mathbb{Q}(\sqrt{a}+\sqrt{b}) \quad \text { so that } \quad \sqrt{a} \in \mathbb{Q}(\sqrt{a}+\sqrt{b}) .
$$

Suppose that $\sqrt{b} \in \mathbb{Q}(\sqrt{a})$. Then

$$
\sqrt{b}=p+q \sqrt{a} .
$$

Squaring both sides gives

$$
p^{2}+2 p q \sqrt{a}+q^{2}=b \in \mathbb{Q} .
$$

Thus

$$
\sqrt{a} \in \mathbb{Q},
$$

a contradiction. It follows that $\mathbb{Q}(\sqrt{a}, \sqrt{b}) \neq \mathbb{Q}(\sqrt{a})$. It follows that

$$
1<[\mathbb{Q}(\sqrt{a}, \sqrt{b}): \mathbb{Q}(\sqrt{a})] \leq 2=\mathbb{Q}(\sqrt{b}): \mathbb{Q}] .
$$

so that

$$
[\mathbb{Q}(\sqrt{a}, \sqrt{b}): \mathbb{Q}(\sqrt{a})]=2 .
$$

By the tower law we have

$$
\begin{aligned}
{[\mathbb{Q}(\sqrt{a}, \sqrt{b}): \mathbb{Q}] } & =[\mathbb{Q}(\sqrt{a}, \sqrt{b}): \mathbb{Q}(\sqrt{a})] \cdot[\mathbb{Q}(\sqrt{a}): \mathbb{Q}] \\
& =2 \cdot 2 \\
& =4
\end{aligned}
$$

Let

$$
\alpha=\sqrt{2}+\sqrt{3} .
$$

Then

$$
\alpha^{2}=2+3+2 \sqrt{6},
$$

so that

$$
2 \sqrt{6}=\alpha^{2}-5 .
$$

If we multiply by α we get

$$
\begin{aligned}
\alpha^{3}-5 \alpha & =2 \sqrt{6}(\sqrt{2}+\sqrt{3}) \\
& =4 \sqrt{3}+6 \sqrt{2}
\end{aligned}
$$

Subtracting 4α gives

$$
2 \sqrt{2}=\alpha^{3}-9 \alpha
$$

8.4.1. As M is a submodule that properly contains \mathbb{Z}, it must contain an element of the form $k \omega$. Let m be the smallest positive multiple of ω contained in M.
Suppose that $\alpha \in M$. Then $\alpha=a+b \omega$. As $\mathbb{Z} \subset M$ we must have $b \omega \in M$. We may write

$$
b=q m+r,
$$

where $0 \leq r<m$. Note that

$$
r \omega=b \omega-q(m \omega) \in M
$$

By minimality of m it follows that $r=0$. Thus 1 and ω generate M. $m=1$ if $d \equiv 2$ or 3 modulo 4 and $m=2$ if $d \equiv 1 \bmod 4$.
8.4.4. (a) Note that

$$
\zeta=e^{2 \pi i / 3}
$$

It follows that $\zeta^{3}=1$. We have

$$
\begin{aligned}
\bar{\zeta} & =e^{-2 \pi i / 3} \\
& =e^{4 \pi i / 3} \\
& =\zeta^{2}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
0 & =\zeta^{3}-1 \\
& =(\zeta-1)\left(\zeta^{2}+\zeta+1\right)
\end{aligned}
$$

As $\zeta \neq 1$ it follows that

$$
\zeta^{2}=\zeta+1
$$

(b) If

$$
\alpha=a+b \zeta .
$$

then

$$
\begin{aligned}
N(\alpha) & =\alpha \bar{\alpha} \\
& =(a+b \zeta)(a+b \bar{\zeta}) \\
& =(a+b \zeta)\left(a+b \zeta^{2}\right) \\
& =a^{2}+a b\left(\zeta+\zeta^{2}\right)+b^{2} \zeta^{3} \\
& =a^{2}-a b+b^{2} .
\end{aligned}
$$

If $|a| \leq 1 / 2$ and $|b| \leq 1 / 2$ then

$$
\begin{aligned}
N(\alpha) & \leq \frac{1}{4}+\frac{1}{4}+\frac{1}{4} \\
& =\frac{3}{4} \\
& <1 .
\end{aligned}
$$

(c) Suppose $\alpha=a+b \zeta$ is an algebraic integer. We will show that a and $b \in \mathbb{Z}$.
Subtracting integer multiples of 1 and ζ we may assume that $|a| \in$ $[0,1 / 2)$ and $|b| \in[0,1 / 2)$, so that $N(\alpha)<1$.
We must have $N(\alpha) \in \mathbb{Z}$. It follows that $a=b=0$.
Thus 1 and ζ are a basis for the ring of integers.
(d) We want

$$
a^{2}-a b+b^{2}= \pm 1
$$

Thus

$$
a^{2}+b^{2}=a b \pm 1
$$

Note that a and b cannot have the same parity. If $a b<0$ then $a b \pm 1 \leq 1$ and so either $a b=0$, a contradiction. Thus $a b \geq 0$. If $a b=0$ then $a^{2}+b^{2}=1$ and either $a=0$ and $b= \pm 1$ or $b=0$ and $a= \pm 1$. Suppose that $a b>0$. Then $a b \geq 1$. On the other hand, $a^{2}+b^{2} \geq 2 a b$ with equality only if $a=b$. Thus $a b=1$ and $a=b$. Thus $a=b=1$ or $a=b=-1$.
This gives $\pm 1, \pm \zeta, \pm \zeta^{2}$. These are all clearly units.
(e) Define $d=N$ the norm. Suppose we are given α and $\beta \in \mathbb{Z}(F)$. We have to find $q \in \mathbb{Z}(F)$ such that

$$
\beta=q \alpha+r,
$$

where either $r=0$ or $N(r)<N(\alpha)$. Let

$$
\gamma=\frac{\beta}{\alpha}
$$

The components of γ are rational numbers; we approximate γ with an integer q. The error r / α then has coefficients at most $1 / 2$. (b) implies that

$$
N(r)<N(\alpha)
$$

It follows that $\mathbb{Z}(F)$ is a Euclidean domain.
(f) If $\alpha=a+b \zeta \in \mathbb{Z}(F)$. Consider

$$
N(\alpha)=a^{2}-a b+b^{2} \quad \bmod 3 .
$$

If $a, b \equiv 0$ modulo 3 then $N(\alpha) \equiv 0 \bmod 3$. If $a \equiv \pm 1$ and $b \equiv 0$ modulo 3 then $N(\alpha) \equiv 1 \bmod 3$. If $a \equiv 1$ and $b \equiv 1$ modulo 3 then
$N(\alpha) \equiv 0 \bmod 3$. If $a \equiv 2$ and $b \equiv 2$ modulo 3 then $N(\alpha) \equiv 0 \bmod 3$.
If $a \equiv 2$ and $b \equiv 1$ modulo 3 then $N(\alpha) \equiv 1 \bmod 3$.
It follows that $N(\alpha) \neq 2 \bmod 3$.
Suppose $p \in \mathbb{Z}$ is a prime and suppose that $p=\alpha \beta$. Then

$$
p^{2}=N(\alpha) N(\beta)
$$

If $p \equiv 2 \bmod 3$ then neither $N(\alpha)$ nor $N(\beta)=p$ and so either $N(\alpha)$ or $N(\beta)=1$. But then p is a prime in $\mathbb{Z}(F)$.
(g) By what we just proved $\mathbb{Z}(F)$ is a UFD. We look for primes.

$$
N(1-\zeta)=2
$$

and so $1-\zeta$ is prime. We already saw that if $p \equiv 2 \bmod 3$ then p is a prime.
Suppose that $p \equiv 1 \bmod 3$. As

$$
\begin{aligned}
\left(\frac{-3}{p}\right) & =\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right) \\
& =\left(\frac{p}{3}\right) \\
& =\left(\frac{1}{3}\right) \\
& =1,
\end{aligned}
$$

it follows that -3 is a quadratic residue of p. By 7.2.c it follows that we may find a and $b \in \mathbb{Z}$ such that $a^{2}+3 b^{2}=p$. Let $d=2 b$ and $c=a+b$. Then

$$
\begin{aligned}
a^{2}+3 b^{2} & =(c-b)^{2}+3 b^{2} \\
& =c^{2}-2 c b+4 b^{2} \\
& =c^{2}-c d+d^{2},
\end{aligned}
$$

so that

$$
p=(c+d \zeta)(c+d \bar{\zeta})
$$

Now suppose that $\alpha \in \mathbb{Z}(F)$. Then $N(\alpha)=m \in \mathbb{Z}$ and so $\alpha \mid m$. We can factor m into a product of ordinary primes and then into a product of the primes above. As we have a UFD, α is then a product of some of those primes.
Thus we have exhausted the list of primes.
8.4.5. Suppose we want to divide α into β. Let

$$
\xi=\frac{\alpha}{\beta} \in \mathbb{Q}(F) .
$$

Let $\gamma \in D$ be the closest point. Then

$$
\beta=\underset{4}{\gamma \alpha}+\rho,
$$

where

$$
\rho=\alpha \cdot(\xi-\gamma)
$$

Thus

$$
N(\rho)<N(\alpha) \quad \text { if and only if } \quad N(\xi-\gamma)<1
$$

Following the notation of the question, we have

$$
\xi-\alpha=u+v \omega \quad \text { and we want } \quad N(\xi-\alpha)<1 .
$$

This gives

$$
N(u+b \omega)<1
$$

There are two cases. If $d \equiv 2$ or $3 \bmod 4$ then this reduces to

$$
\left|u^{2}-d v^{2}\right|<1
$$

If $d \equiv 1 \bmod 4$ then this reduces to

$$
\left|\left(u+\frac{v}{2}\right)^{2}-d\left(\frac{v}{2}\right)^{2}\right|<1
$$

We first suppose that $0 \leq u \leq 1 / 2$ and $0 \leq v \leq 1 / 2$. It enough then to show that the maximum of the LHS is less than one.
If $d \equiv 2$ or $3 \bmod 4$ and $d>0$ then clearly the worse case is when $u=0$ and $v=1 / 2$. We have the cases $d=2$ or $3 ; d=3$ is the worse case when we get

$$
\frac{3}{4}<1 .
$$

If $d<0$ then the worse case is $u=v=1 / 2$. We have the cases $d=-1$ or $d=-2 ; d=-2$ is the worse case when we get

$$
\frac{1}{4}+\frac{2}{4}=34<1
$$

Now suppose $d \equiv 1 \bmod 4$. There are two cases. If $d>0$ then we consider the optimisation problem:

$$
\max \left|\left(u+\frac{v}{2}\right)^{2}-d\left(\frac{v}{2}\right)^{2}\right| \quad \text { subject to } \quad 0 \leq u, v \leq \frac{1}{2}
$$

Setting the partial derivatives equal to zero gives

$$
2 u+v=0 \quad \text { and } \quad v=0 .
$$

Thus the maximum occurs on the boundary. We have to consider the maximum of the absolute value of

$$
u^{2} \quad(d-1) \frac{v^{2}}{4} \quad\left(u+\frac{1}{4}\right)^{2}-\frac{d}{16} \quad \text { and } \quad\left(\frac{v}{2}+\frac{1}{2}\right)^{2}-\frac{d v^{2}}{4}
$$

Thus the maximum either occurs at one of the four boundary corners or at the critical point of the fourth function, where

$$
\frac{v}{2}+\frac{1}{2}-\frac{d v}{2}=0 \quad \text { so that } \quad v=\frac{1}{d-1} .
$$

The maximum at the four corners is

$$
\frac{d-1}{16} .
$$

This is less than one for $d<16$. If $d>3$ the critical point is at an interior point. If $d=5$ the critical point is $v=1 / 4$ and we get

$$
\left(\frac{1}{2}+\frac{1}{8}\right)^{2}-\frac{5}{16}<1
$$

If $d=13$ the critical point is $v=1 / 12$ and we get

$$
\left(\frac{1}{2}+\frac{1}{24}\right)^{2}-\frac{13}{4 \cdot 12^{2}}<1
$$

If $d<0$ then we consider a slightly different optimisation problem:

$$
\max \left|\left(-u+\frac{v}{2}\right)^{2}+|d|\left(\frac{v}{2}\right)^{2}\right| \quad \text { subject to } \quad 0 \leq u, v \leq \frac{1}{2} .
$$

It is again enough to show that the maximum is less than one; we just choose $x-a<0$. We have flipped the sign of u as a matter of convenience.
The maximum at the four corners is

$$
\frac{|d|+1}{16} .
$$

This is less than one, provided

$$
|d|<15 .
$$

The function has no critical point in the interior. We have to consider the maximum of the absolute value of
$u^{2} \quad(|d|+1) \frac{v^{2}}{4} \quad\left(u-\frac{1}{4}\right)^{2}+\frac{|d|}{16} \quad$ and $\quad\left(\frac{v}{2}-\frac{1}{2}\right)^{2}+\frac{|d| v^{2}}{4}$.

All of these have their maximum at one of the corners.

