
MODEL ANSWERS TO THE SEVENTH HOMEWORK

8.3.4. We have

a+ 2
√
ab+ b = (

√
a+
√
b)2 ∈ Q(

√
a+
√
b).

It follows that
√
ab ∈ Q(

√
a+
√
b). It follows that

a
√
b+ b

√
a =
√
ab(
√
a+
√
b) ∈ Q(

√
a+
√
b).

Subtracting b(
√
a+
√
b) it follows that

√
b ∈ Q(

√
a+
√
b) so that

√
a ∈ Q(

√
a+
√
b).

Suppose that
√
b ∈ Q(

√
a). Then
√
b = p+ q

√
a.

Squaring both sides gives

p2 + 2pq
√
a+ q2 = b ∈ Q.

Thus √
a ∈ Q,

a contradiction. It follows that Q(
√
a,
√
b) 6= Q(

√
a). It follows that

1 < [Q(
√
a,
√
b) : Q(

√
a)] ≤ 2 = Q(

√
b) : Q].

so that

[Q(
√
a,
√
b) : Q(

√
a)] = 2.

By the tower law we have

[Q(
√
a,
√
b) : Q] = [Q(

√
a,
√
b) : Q(

√
a)] · [Q(

√
a) : Q]

= 2 · 2
= 4.

Let

α =
√

2 +
√

3.

Then

α2 = 2 + 3 + 2
√

6,

so that

2
√

6 = α2 − 5.
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If we multiply by α we get

α3 − 5α = 2
√

6(
√

2 +
√

3)

= 4
√

3 + 6
√

2.

Subtracting 4α gives
2
√

2 = α3 − 9α.

8.4.1. As M is a submodule that properly contains Z, it must contain
an element of the form kω. Let m be the smallest positive multiple of
ω contained in M .
Suppose that α ∈ M . Then α = a + bω. As Z ⊂ M we must have
bω ∈M . We may write

b = qm+ r,

where 0 ≤ r < m. Note that

rω = bω − q(mω) ∈M.

By minimality of m it follows that r = 0. Thus 1 and ω generate M .
m = 1 if d ≡ 2 or 3 modulo 4 and m = 2 if d ≡ 1 mod 4.
8.4.4. (a) Note that

ζ = e2πi/3.

It follows that ζ3 = 1. We have

ζ̄ = e−2πi/3

= e4πi/3

= ζ2.

On the other hand,

0 = ζ3 − 1

= (ζ − 1)(ζ2 + ζ + 1).

As ζ 6= 1 it follows that
ζ2 = ζ + 1.

(b) If
α = a+ bζ.

then

N(α) = αᾱ

= (a+ bζ)(a+ bζ̄)

= (a+ bζ)(a+ bζ2)

= a2 + ab(ζ + ζ2) + b2ζ3

= a2 − ab+ b2.
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If |a| ≤ 1/2 and |b| ≤ 1/2 then

N(α) ≤ 1

4
+

1

4
+

1

4

=
3

4
< 1.

(c) Suppose α = a + bζ is an algebraic integer. We will show that a
and b ∈ Z.
Subtracting integer multiples of 1 and ζ we may assume that |a| ∈
[0, 1/2) and |b| ∈ [0, 1/2), so that N(α) < 1.
We must have N(α) ∈ Z. It follows that a = b = 0.
Thus 1 and ζ are a basis for the ring of integers.
(d) We want

a2 − ab+ b2 = ±1.

Thus
a2 + b2 = ab± 1.

Note that a and b cannot have the same parity. If ab < 0 then ab±1 ≤ 1
and so either ab = 0, a contradiction. Thus ab ≥ 0. If ab = 0 then
a2 + b2 = 1 and either a = 0 and b = ±1 or b = 0 and a = ±1. Suppose
that ab > 0. Then ab ≥ 1. On the other hand, a2 + b2 ≥ 2ab with
equality only if a = b. Thus ab = 1 and a = b. Thus a = b = 1 or
a = b = −1.
This gives ±1, ±ζ, ±ζ2. These are all clearly units.
(e) Define d = N the norm. Suppose we are given α and β ∈ Z(F ).
We have to find q ∈ Z(F ) such that

β = qα + r,

where either r = 0 or N(r) < N(α). Let

γ =
β

α
.

The components of γ are rational numbers; we approximate γ with an
integer q. The error r/α then has coefficients at most 1/2. (b) implies
that

N(r) < N(α).

It follows that Z(F ) is a Euclidean domain.
(f) If α = a+ bζ ∈ Z(F ). Consider

N(α) = a2 − ab+ b2 mod 3.

If a, b ≡ 0 modulo 3 then N(α) ≡ 0 mod 3. If a ≡ ±1 and b ≡ 0
modulo 3 then N(α) ≡ 1 mod 3. If a ≡ 1 and b ≡ 1 modulo 3 then
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N(α) ≡ 0 mod 3. If a ≡ 2 and b ≡ 2 modulo 3 then N(α) ≡ 0 mod 3.
If a ≡ 2 and b ≡ 1 modulo 3 then N(α) ≡ 1 mod 3.
It follows that N(α) 6= 2 mod 3.
Suppose p ∈ Z is a prime and suppose that p = αβ. Then

p2 = N(α)N(β).

If p ≡ 2 mod 3 then neither N(α) nor N(β) = p and so either N(α)
or N(β) = 1. But then p is a prime in Z(F ).
(g) By what we just proved Z(F ) is a UFD. We look for primes.

N(1− ζ) = 2

and so 1 − ζ is prime. We already saw that if p ≡ 2 mod 3 then p is
a prime.
Suppose that p ≡ 1 mod 3. As(

−3

p

)
=

(
−1

p

)(
3

p

)
=

(p
3

)
=

(
1

3

)
= 1,

it follows that −3 is a quadratic residue of p. By 7.2.c it follows that
we may find a and b ∈ Z such that a2 + 3b2 = p. Let d = 2b and
c = a+ b. Then

a2 + 3b2 = (c− b)2 + 3b2

= c2 − 2cb+ 4b2

= c2 − cd+ d2,

so that
p = (c+ dζ)(c+ dζ̄).

Now suppose that α ∈ Z(F ). Then N(α) = m ∈ Z and so α|m. We
can factor m into a product of ordinary primes and then into a product
of the primes above. As we have a UFD, α is then a product of some
of those primes.
Thus we have exhausted the list of primes.
8.4.5. Suppose we want to divide α into β. Let

ξ =
α

β
∈ Q(F ).

Let γ ∈ D be the closest point. Then

β = γα + ρ,
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where

ρ = α · (ξ − γ).

Thus

N(ρ) < N(α) if and only if N(ξ − γ) < 1.

Following the notation of the question, we have

ξ − α = u+ vω and we want N(ξ − α) < 1.

This gives

N(u+ bω) < 1.

There are two cases. If d ≡ 2 or 3 mod 4 then this reduces to

|u2 − dv2| < 1.

If d ≡ 1 mod 4 then this reduces to∣∣∣∣(u+
v

2

)2

− d
(v

2

)2
∣∣∣∣ < 1.

We first suppose that 0 ≤ u ≤ 1/2 and 0 ≤ v ≤ 1/2. It enough then
to show that the maximum of the LHS is less than one.
If d ≡ 2 or 3 mod 4 and d > 0 then clearly the worse case is when
u = 0 and v = 1/2. We have the cases d = 2 or 3; d = 3 is the worse
case when we get

3

4
< 1.

If d < 0 then the worse case is u = v = 1/2. We have the cases d = −1
or d = −2; d = −2 is the worse case when we get

1

4
+

2

4
= 34 < 1.

Now suppose d ≡ 1 mod 4. There are two cases. If d > 0 then we
consider the optimisation problem:

max

∣∣∣∣(u+
v

2

)2

− d
(v

2

)2
∣∣∣∣ subject to 0 ≤ u, v ≤ 1

2
.

Setting the partial derivatives equal to zero gives

2u+ v = 0 and v = 0.

Thus the maximum occurs on the boundary. We have to consider the
maximum of the absolute value of

u2 (d− 1)
v2

4

(
u+

1

4

)2

− d

16
and

(
v

2
+

1

2

)2

− dv2

4
.
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Thus the maximum either occurs at one of the four boundary corners
or at the critical point of the fourth function, where

v

2
+

1

2
− dv

2
= 0 so that v =

1

d− 1
.

The maximum at the four corners is
d− 1

16
.

This is less than one for d < 16. If d > 3 the critical point is at an
interior point. If d = 5 the critical point is v = 1/4 and we get(

1

2
+

1

8

)2

− 5

16
< 1.

If d = 13 the critical point is v = 1/12 and we get(
1

2
+

1

24

)2

− 13

4 · 122
< 1.

If d < 0 then we consider a slightly different optimisation problem:

max

∣∣∣∣(−u+
v

2

)2

+ |d|
(v

2

)2
∣∣∣∣ subject to 0 ≤ u, v ≤ 1

2
.

It is again enough to show that the maximum is less than one; we
just choose x − a < 0. We have flipped the sign of u as a matter of
convenience.
The maximum at the four corners is

|d|+ 1

16
.

This is less than one, provided

|d| < 15.

The function has no critical point in the interior. We have to consider
the maximum of the absolute value of

u2 (|d|+ 1)
v2

4

(
u− 1

4

)2

+
|d|
16

and

(
v

2
− 1

2

)2

+
|d|v2

4
.

All of these have their maximum at one of the corners.
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