MODEL ANSWERS TO THE SEVENTH HOMEWORK

8.3.4. We have

a+2Vab+b = (vVa+ vb)? € Q(va+ Vb).
It follows that v/ab € Q(v/a + V/b). Tt follows that

avb + byv/a = Vab(v/a + Vb) € Q(va + VD).
Subtracting b(y/a + V/b) it follows that

Vb e Q(va + Vb) so that Va € Q(va+ V).
Suppose that v/b € Q(y/a). Then
Vb =p+ qv/a.
Squaring both sides gives
P’ +2pgv/a+ ¢ =beQ.
Thus
Vaeq,

a contradiction. Tt follows that Q(v/a, v/d) # Q(y/a). Tt follows that

1 < [Q(va,Vb) : Q(Va)] <2=Q(Vb) : Ql.
so that

[Q(va,Vb) : Q(Va)] = 2.

By the tower law we have

[Q(Va, V) : Q] = [Q(va, Vb) : Q(Va)] - [Q(Va) : Q)

=22
=4.
Let
a=v2+V3.
Then
o =2+ 3+2V6,
so that

26 = a? — 5.
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If we multiply by a we get

o’ —5a = 2v6(V2 + V/3)
= 4V3 + 6V2.

Subtracting 4« gives
22 = o’ — 9au.
8.4.1. As M is a submodule that properly contains 7Z, it must contain
an element of the form kw. Let m be the smallest positive multiple of
w contained in M.
Suppose that « € M. Then a = a + bw. As Z C M we must have
bw € M. We may write
b=qgm+r,
where 0 < r < m. Note that
rw = bw — q(mw) € M.

By minimality of m it follows that » = 0. Thus 1 and w generate M.
m=1ifd=2or3modulo4and m=2ifd=1 mod 4.
8.4.4. (a) Note that

¢ = i3,
It follows that ¢ = 1. We have
= e 2mil3
_ pAmi/s
= (2
On the other hand,
0=C—-1

= (=D +¢+1).
As ¢ # 1 it follows that

¢=(+1L
(b) If
a=a-+bC.
then
N(a) = aa
= (a+b¢)(a + b()
= (a +b¢)(a + b¢?)

= a® 4 ab(¢ + %) + v*¢3
=a? — ab+ V.
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If |a| < 1/2 and |b| < 1/2 then

N(a) <

=~ =
A~ =

Ll SN IOV RSN

<

(c) Suppose o = a + b is an algebraic integer. We will show that a
and b € Z.
Subtracting integer multiples of 1 and { we may assume that |a| €
[0,1/2) and |b|] € [0,1/2), so that N(a) < 1.
We must have N(«) € Z. It follows that a = b= 0.
Thus 1 and ¢ are a basis for the ring of integers.
(d) We want
a® —ab +b* = *1.
Thus
a’? + b =ab+ 1.

Note that a and b cannot have the same parity. If ab < 0 then ab+1 < 1
and so either ab = 0, a contradiction. Thus ab > 0. If ab = 0 then
a?+1b?> =1 and either a = 0 and b = 1 or b = 0 and a = 1. Suppose
that ab > 0. Then ab > 1. On the other hand, a® + b* > 2ab with
equality only if @ = . Thus ab =1 and a =b. Thusa =b =1 or
a=b=—1.

This gives £1, £¢, £¢?. These are all clearly units.

(e) Define d = N the norm. Suppose we are given o and 8 € Z(F).
We have to find ¢ € Z(F) such that

f=qatr,
where either 7 =0 or N(r) < N(«). Let

_ B

v==.

@
The components of v are rational numbers; we approximate v with an
integer q. The error /a then has coefficients at most 1/2. (b) implies

that

N(r) < N(«).
It follows that Z(F) is a Euclidean domain.
(f) If o = a+b¢ € Z(F). Consider
N(a) =a*—ab+b* mod 3.

If a, b = 0 modulo 3 then N(a) =0 mod 3. If a = +1 and b = 0

modulo 3 then N(a) =1 mod 3. If a = 1 and b = 1 modulo 3 then
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N(a) =0 mod 3. If a = 2 and b = 2 modulo 3 then N(a) =0 mod 3.
If a =2 and b =1 modulo 3 then N(a) =1 mod 3.

It follows that N(a) # 2 mod 3.

Suppose p € Z is a prime and suppose that p = af. Then

p* = N(a)N(B).
If p =2 mod 3 then neither N(«) nor N(f) = p and so either N(«)
or N(5) = 1. But then p is a prime in Z(F).
(g) By what we just proved Z(F') is a UFD. We look for primes.
N(1—¢) =2
and so 1 — ( is prime. We already saw that if p = 2 mod 3 then p is

p p

Suppose that p =1 mod 3. As
_ (P
B (3)

&
o

it follows that —3 is a quadratic residue of p. By 7.2.c it follows that
we may find @ and b € Z such that a® + 30> = p. Let d = 2b and
c=a+b. Then

a® + 3% = (c — b)? + 3
= ¢* — 2cb + 4b?
= —cd+ &,
so that -
p = (c+d¢)(c+ dc).
Now suppose that a € Z(F'). Then N(a) = m € Z and so ajm. We
can factor m into a product of ordinary primes and then into a product
of the primes above. As we have a UFD, « is then a product of some
of those primes.

Thus we have exhausted the list of primes.
8.4.5. Suppose we want to divide « into 3. Let

ézge@w>

Let v € D be the closest point. Then

B =ya+p,
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where
p=a- (=)
Thus
N(p) < N(«) if and only if ~ N(£—7) < 1.
Following the notation of the question, we have
E—a=u+rw and we want N —a) <.
This gives
N(u+bw) < 1.
There are two cases. If d =2 or 3 mod 4 then this reduces to
lu® — dv?| < 1.

If d=1 mod 4 then this reduces to

V) 2 V) 2
2 -
(“ + 2> 2
We first suppose that 0 < u < 1/2 and 0 < v < 1/2. It enough then
to show that the maximum of the LHS is less than one.
If d=2or3 mod4 and d > 0 then clearly the worse case is when

u =0 and v = 1/2. We have the cases d = 2 or 3; d = 3 is the worse
case when we get

< 1.

3
- <1
4
If d < 0 then the worse case is u = v = 1/2. We have the cases d = —1
or d = —2; d = —2 is the worse case when we get
1 2
—+-=34<1
4 * 4

Now suppose d = 1 mod 4. There are two cases. If d > 0 then we
consider the optimisation problem:

(v+3) -a(3)

Setting the partial derivatives equal to zero gives

1
max -
2

subject to 0<u,v<

2u+v =20 and v =0.

Thus the maximum occurs on the boundary. We have to consider the
maximum of the absolute value of

2 1\? d v 1\?  d?
2 _nZ o) -2 viZ) 2%
U (d )4 u+4 T and 2—|-2 1
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Thus the maximum either occurs at one of the four boundary corners
or at the critical point of the fourth function, where

v 1 dv 1
5—1—5—7—0 so that U_ﬁ‘
The maximum at the four corners is
d—1
16

This is less than one for d < 16. If d > 3 the critical point is at an
interior point. If d =5 the critical point is v = 1/4 and we get

1+12 5<1
2 8 16

If d = 13 the critical point is v = 1/12 and we get

1+1 2 13 o
2 24 4.122

If d < 0 then we consider a slightly different optimisation problem:

max
2

It is again enough to show that the maximum is less than one; we
just choose x —a < 0. We have flipped the sign of u as a matter of
convenience.
The maximum at the four corners is
|d| +1
16

2 2 1
(—u + 9) + |d| (g) ‘ subject to 0 <wu,v < 3

This is less than one, provided
|d| < 15.

The function has no critical point in the interior. We have to consider
the maximum of the absolute value of

2 2 2 2
2 v _y v_ L\, ld
u (|d|+1) 1 <u 4) + 16 and 57 3) vt

All of these have their maximum at one of the corners.



