
MODEL ANSWERS TO THE SIXTH HOMEWORK

8.2.7. Suppose that α is a solution of x2 − dy2 = 4. We may suppose
that the coefficients of α are positive. Pick a natural number n such
that

2

(
ζ

2

)n
≤ α < 2

(
ζ

2

)n+1

.

Let

β =
α(
ζ
2

)n .
Then 2 ≤ β < ζ and N(β) = 4. As

4 = ζζ̄

it follows that (
ζ

2

)−1

=
ζ̄

2
,

so that

β = α ·
(
ζ̄

2

)n
∈ Z[
√
d].

Minimality of ζ implies that β = 2 so that

α = 2

(
ζ

2

)n
.

Now suppose x2 − dy2 = −4 is solvable. Let η be a minimal solution
with positive coefficients. Let

β = 2
(η

2

)2
.

Arguing as in the proof of Theorem 8.8, it is easy to see that β ∈ Z[
√
d].

On the other hand,

N(β) = N(1/2)N(η)N(η)

= 4,

so that β is a solution of x2 − dy2 = 4 with positive coefficients. By
minimality of ζ It follows that

1 < ζ ≤ β.

As
−4 = ηη̄

1



it follows that (η
2

)−1

= − η̄
2
.

As

φ = −ζη̄ ∈ Z[
√
d].

We have

η−1 < φ ≤ η.

Note that

N(φ) = −1,

and so φ 6= 1. We can split the inequalities above into two inequalities

η−1 < φ < 1 and 1 < φ ≤ η.

The first becomes

1 < φ−1 < η

and so we must have φ = η by minimality of η.
Thus

ζ = 2
(η

2

)2
.

It is easy to see that

2

(
ζ

2

)n
is a solution of x2 − dy2 = −4. Finally suppose that α is a solution of
x2 − dy2 = −4. η ≤ α by minimality of η. Pick a natural number n
such that

2

(
ζ

2

)n
≤ α < 2

(
ζ

2

)n+1

.

Let

β = α ·
(
ζ̄

2

)n
∈ Z[
√
d].

Then N(β) = −4 and so

η ≤ β < ζ = 2
(η

2

)2
by minimality of η. Arguing as above, it follows that β = η and so

α = η

(
ζ

2

)n
8.2.9. Suppose t > 0. As

0 <
t2

4
2



it follows that

1 + t <
t2

4
+ t+ 1

=

(
t

2
+ 1

)2

.

Taking the square root of both sides and subtracting gives
√

1 + t− 1 <
t

2
.

If we follow the same lines of the proof we get to the situation

u = u1

[
x1 − y1

√
d+ y1

√
d

(
1−

√
1 +
|k|
u21

)]
.

Our goal to find a solution u whose absolute value is smaller than u1;
if u is negative, we can always flip the sign of u. Applying the result
above with t = |k|/u21 > 0 we get

u1

(
δ−1 − x1|k|

2u21

)
< u < u1.

The coefficient of u1 will be greater than −1, provided

x1|k|
2u21

< 1 + δ−1.

This is easy seen to be equivalent to

u1 >

√
δx1|k|

2(δ + 1)
.

8.2.11. We consider the possible values of x.
If we take x = 1 then either y = 3 or y = 4 works:

|π − 3| = 0.14 · · · < 1 and |π − 4| = 0.858 · · · < 1.

If we take x = 2 then y = 6 works:

|2π − 6| = 0.283 · · · < 1/2.

If take x = 3 then there is no value of y, since 3π = 9.424 . . . is bigger
than 9.333 . . . but smaller than 9.666 . . . .
If we take x = 4 then there is no value of y, since 4π = 12.566 . . . is
bigger than 12.25 but smaller than 12.75.
If we take x = 5 then there is no value of y, since 5π = 15.707 . . . is
bigger than 15.2 but smaller than 15.8.
If we take x = 6 then y = 19 works:

|6π − 19| = 0.150 · · · < 1/6.
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If we take x = 7 then y = 22 works:

|7π − 22| = 0.008 < 1/7.

If we take x = 8 then there is no value of y, since 8π = 25.132 . . . is
bigger than 25.125 but smaller than 25.875.
If we take x = 9 then there is no value of y, since 8π = 28.274 . . . is
bigger than 28.111 . . . but smaller than 29.888 . . . .
If we take x = 10 then there is no value of y, since 10π = 31.415 . . . is
bigger than 31.1 but smaller than 31.9.
8.2.15. Note that

2xn = (xn + yn
√
d) + (xn − yn

√
d)

= δn + δ̄n

= δn + δ−n.

Therefore

4x1xn − 2xn−1 = (δ + δ−1)(δn + δ−n)− (δn−1 + δ−n+1)

= δn+1 + δ−(n+1)

= 2xn+1.

On the other hand,

2yn = (xn + yn
√
d)− (xn − yn

√
d)

= δn − δ̄n

= δn − δ−n.
Therefore

4x1yn − 2yn−1 = (δ + δ−1)(δn − δ−n)− (δn−1 − δ−n+1)

= δn+1 − δ−(n+1)

= 2yn+1.

8.2.16. Let
δ = x1 + y1

√
p

be a fundamental solution, so that

x21 − py21 = 1.

Reducing modulo 4, we see that x1 is odd and y1 is even, so that x1−1
and x1 + 1 are both even. We have

x21 − 1 = py21.

so that
x1 + 1

2
· x1 − 1

2
= p

(y1
2

)2
,
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where the three factors are integers. Let

u =
x1 − 1

2
and v =

y1
2
.

Then

u+ 1 =
x1 + 1

2
so that

u(u+ 1) = pv2.

Note that every prime factor of v must divide exactly one of u or u−1.
Suppose that

u+ 1 = a2 and u = pb2,

for integers a and b. We may assume that a and b ≥ 0. We have

x1 = 2a2 − 1 and x1 = 2pb2 + 1,

so that a ≤ x1 and b < x1. It follows that

a2 − pb2 = 1.

As δ is the fundamental solution we must have a = 1 and b = 0, so
that x1 = 1, a contradiction.
Thus

u+ 1 = pa2 and u = b2,

for integers a and b. We have

b2 − pa2 = −1.

8.2.17. If two integers are consecutive then they are coprime. It follows
that we are looking for solutions to

x2 + y2 = z2,

where x, y and z are pairwise coprime. If we assume that y is even the
general solution is

x = c(a2 − b2) y = 2abc and z = c(a2 + b2),

where c = ±1, and a and b are coprime and have opposite parity. Then
we want to choose a and b such that

a2 − b2 = 2ab± 1

Completing the square gives

(a− b)2 − 2b2 = ±1.

Thus we are looking for solutions to Pell’s equation

u2 − 2v2 = ±1.
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The minimal solution to

u2 − 2v2 = −1

with positive coefficients is γ = 1 +
√

2 and every solution to

u2 − 2v2 = ±1,

is then a power of γ. The general solution of Pell’s equation is then
given by the coefficients of ±γn. As u = a− b and v = b it follows that
a = u+ v and b = v.
If we take u = v = 1 then a = 2 and b = 1. This gives the Pythagorean
triple (3, 4, 5). If we square γ we get u = 3 and v = 2. This gives a = 5
and b = 2. In this case we get the Pythagorean triple (21, 20, 29). If
we cube γ this gives u = 7 and v = 5. This gives a = 12 and b = 5. In
this case we get the Pythagorean triple (119, 120, 169).
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