
MODEL ANSWERS TO THE FIFTH HOMEWORK

3.5.9. It is clear that Op is a ring. Suppose that α and β are two
non-zero p-adic integers. Then

α = pm(a0 + a1p
2 + . . . ) and β = pn(b0 + b1p

2 + . . . ),

where a0 and b0 are non-zero. In this case

αβ = pn+m(c0 + c1p+ . . . ),

where c0 ≡ a0b0 mod p. In particular c0 6= 0, so that Op has no zero
divisors.
If |α|p = 1 then

α = a0 + a1p+ . . . ,

where a0 6= 0. It follows that we may find b0 such that a0b0 ≡ 1 mod p.
Note that

(a0 + a1p+ · · ·+ amp
m) · b0 ≡ 1 mod p,

for all n. Therefore we can solve the equation

(a0 + a1p+ · · ·+ amp
m)x ≡ 1 mod pn

for all m And n. This defines

β ∈ Op such that αβ = 1.

Hence α is a unit. Conversely, if

αβ = 1

then
νp(α) + νp(β) = 0,

so that νp(α) = 0 and
|α|p = 1.

3.5.10. Suppose that

a =
b

c
is a non-zero rational number. As the norm is multiplicative, we may
assume that c = 1, so that a ∈ Z is a non-zero integer. We may also
assume that a > 0 so that a is a natural number. As the norm is
multiplicative, we may assume that a = p is a prime. In this case

|a|q =

{
1
p

if q = p

1 otherwise.
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As |a| = p the result follows.
3.5.11. Consider the p-adic integer

α = 1 + pk + p2k + . . . .

We have

α− 1 = pk + p2k + p3k + . . .

= pk(1 + pk + p2k + . . . )

= pkα.

Thus

α =
−1

pk − 1
∈ Q.

Suppose that

α = pn(a0 + a1p+ a2p
2 + a3p

3 + . . . ).

We may assume that n = 0 so that α is a p-adic integer. If a0, a1, a2, . . .
is eventually periodic then we can find b1, b2, . . . , bk and l such that if
n > l then

an = br,

where r is the remainder after dividing k into n− l. It follows that

α = α0 + α1 + · · ·+ αk,

where

α0 = a0 + a1p+ · · ·+ alp
l ∈ Z

α1 = b1p
l+1(1 + pk + p2k + . . . )

α2 = b2p
l+2(1 + pk + p2k + . . . )

...

αk = bkp
l+k(1 + pk + p2k + . . . ).

By what we have already proved, every term α0, α1, . . . , αk is a rational
number and so α is a rational number.
Now suppose that α = a/b is a rational number. There is no harm
in assuming that a = ±1, since multiplying α by an integer preserves
periodicity.
Note that Euler’s theorem implies that

pϕ(b) ≡ 1 mod b,

so that b divides pk − 1, where k = ϕ(b). It follows that

−1

b
=

c

pk − 1
,
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where c is an integer. But we already saw that the expression on the
right has an eventually periodic expression as a p-number.
3.5.12. One direction is clear; if the series converges the terms must be
going to zero, so that

lim
k→∞
|ak|p = 0.

Now suppose that

lim
k→∞
|ak|p = 0.

Pick ε > 0. Then we may find k0 such that if k ≥ k0 then

|ak|p < ε.

But then

|
∑

k0≤k≤k1

ak|p = max
k0≤k≤k1

(|ak|p)

< ε.

Thus the series converges, as the partial sums are going to zero.
3.5.13. Immediate from 3.5.12.
8.2.1. First note that the last result is false as stated. Consider

x2 + y2 = 2.

This has the integral solution x = y = 1. We have

p = −4 q = 0 r = 8 so that k = −32.

k is non-zero and p is not a square and yet

x2 + y2 = 2

has only finitely many solutions with bounded denominators.
Consider the equation:

ax2 + bxy + cy2 + dx+ ey + f = 0.

If we consider the LHS as a polynomial in x, then we get the equation

ax2 + (by + d)x+ (cy2 + ey + f) = 0.

This has a rational solution in x provided

(by + d)2 − 4a(cy2 + ey + f)

is a square. Expanding as a polynomial in y we get

(b2 − 4ac)y2 + (2bd− 4ae)y + (d2 − 4af).

This reduces to

py2 + 2qy + r.
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We want this to be a square, so we introduce another variable z. We
have

z2 = py2 + 2qy + r.

Rearranging, we get

py2 + 2qy + (r − z2) = 0.

For this to have a solution we must have

4q2 − 4p(r − z2)

is a square. We introduce another variable w. Thus

w2 = q2 − pr + pz2.

Rearranging we get

w2 − pz2 = k.

Suppose we have an integer solution w and z. It follows that

py2 + 2qy + (r − z2) = 0

has a rational solution. By the quadratic formula, it follows that there
is a solution with 2py ∈ Z. As the equation

ax2 + (by + d)x+ (cy2 + ey + f) = 0

has a rational solution, whose discriminant is an integer. Again by the
quadratic formula it follows that there is a solution such that 4apx is
an integer.
Conversely suppose we have rational numbers x and y such that 4apx
and 2py are integers. Then we we get a rational solution to the equation

w2 − pz2 = k.

As the quadratic equation

py2 + 2qy + (r − z2) = 0

has a solution such that 2py is an integer, it must have a discriminant
which is a square. As the discriminant is also an integer, it follows that
z is an integer. But then w is an integer, as its square is an integer.
Suppose that k 6= 0 and p > 0 is not a square. Then there are infinitely
many units. As we have one solution this equation then has infinitely
many solutions.
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8.2.2. We follow the notation of 8.2.1. We have

p = 62 − 4 · 1 · −4

= 36 + 16

= 52,

q = 6 · −4− 2 · −12

= −24 + 24

= 0,

r = 42 − 4 · −19

= 4(4 + 19)

= 92,

k = −52 · 92

= −24 · 13 · 23

= −4784.

Using 8.2.1, we have to solve

w2 − 52z2 = −4784.

If we rewrite this equation as

w2 = 22 · 13(z2 − 4 · 23)

it is clear we have to choose z so that z2−4 ·23 is divisible by 13. Trial
and error gives z = 12. In this case

144− 4 · 23 = 52 = 4 · 13.

Thus

z = 12 and w = 4 · 13 = 52.

We have to solve

py2 + 2qy + r = z2.

This gives

52y2 + 92 = 144,

so that y2 = 1. Thus y = ±1. This gives

x2 + 2x− 35 = 0 and x2 − 10x− 11 = 0.

This gives integral solutions

(x, y) = (5, 1) (−7, 1) (11,−1) and (−1,−1).

8.2.3. We look for the fundamental solution δ = x + y
√
d by trial and

error. Reducing modulo 2, we know that x has to be odd and reducing
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modulo 4, we know that y has to be even. If we try x = 3 and y = 2
we get a solution and this is clearly the fundamental solution,

δ = 3 + 2
√

2.

It follows that the general solution is

±(3 + 2
√

2)n.

8.2.5. Consider the equation

x2 − 2y2 = −1.

It has one solution x = y = 1 and so it has infinitely many in the same
class. Hence it has infinitely many solutions with x and y > 0. We
have

|x− y
√

2| = 1

|x+ y
√

2|
which goes to zero as y goes to infinity. Thus

|x+ y
√

2| = |x− y
√

2 + 2y
√

2|

≤ |x− y
√

2|+ 2y
√

2.

Thus

y|x− y
√

2| ≤ 1 + ε

2
√

2
.

Let u = xn
√

2y and v = n. Note that

u2 − 2v2 < 0

and if
x2 − 2y2 < 0 where x > 0, y = n

then
x2 − 2y2 ≤ u2 − 2v2

with equality if and only if x = u. Therefore there are infinitely many
n such that

|u− v
√

2| < 1 + ε

2v
√

2
.

On the other hand, if

|u− v
√

2| < 1− ε
2v
√

2

then

|u2 − 2v2| < 1− ε
2v
√

2
|u− v

√
2 + 2v

√
2|

<
1

v
+ (1− ε).
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If v is sufficiently large then the last term is smaller than one and
u2 = 2v2, impossible. Thus

an >
1− ε
2
√

2

for n sufficiently large.
8.2.6. If

x2 − dy2 = −1

then we have
x2 ≡ −1 mod d.

But then Theorem 2.5 implies that d has a primitive representation as
a sum of squares.
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