MODEL ANSWERS TO THE FIFTH HOMEWORK

3.5.9. It is clear that \mathcal{O}_{p} is a ring. Suppose that α and β are two non-zero p-adic integers. Then

$$
\alpha=p^{m}\left(a_{0}+a_{1} p^{2}+\ldots\right) \quad \text { and } \quad \beta=p^{n}\left(b_{0}+b_{1} p^{2}+\ldots\right)
$$

where a_{0} and b_{0} are non-zero. In this case

$$
\alpha \beta=p^{n+m}\left(c_{0}+c_{1} p+\ldots\right),
$$

where $c_{0} \equiv a_{0} b_{0} \bmod p$. In particular $c_{0} \neq 0$, so that \mathcal{O}_{p} has no zero divisors.
If $|\alpha|_{p}=1$ then

$$
\alpha=a_{0}+a_{1} p+\ldots,
$$

where $a_{0} \neq 0$. It follows that we may find b_{0} such that $a_{0} b_{0} \equiv 1 \bmod p$. Note that

$$
\left(a_{0}+a_{1} p+\cdots+a_{m} p^{m}\right) \cdot b_{0} \equiv 1 \quad \bmod p,
$$

for all n. Therefore we can solve the equation

$$
\left(a_{0}+a_{1} p+\cdots+a_{m} p^{m}\right) x \equiv 1 \quad \bmod p^{n}
$$

for all m And n. This defines

$$
\beta \in \mathcal{O}_{p} \quad \text { such that } \quad \alpha \beta=1 .
$$

Hence α is a unit. Conversely, if

$$
\alpha \beta=1
$$

then

$$
\nu_{p}(\alpha)+\nu_{p}(\beta)=0
$$

so that $\nu_{p}(\alpha)=0$ and

$$
|\alpha|_{p}=1
$$

3.5.10. Suppose that

$$
a=\frac{b}{c}
$$

is a non-zero rational number. As the norm is multiplicative, we may assume that $c=1$, so that $a \in \mathbb{Z}$ is a non-zero integer. We may also assume that $a>0$ so that a is a natural number. As the norm is multiplicative, we may assume that $a=p$ is a prime. In this case

$$
|a|_{q}= \begin{cases}\frac{1}{p} & \text { if } q=p \\ 1 & \text { otherwise }\end{cases}
$$

As $|a|=p$ the result follows.
3.5.11. Consider the p-adic integer

$$
\alpha=1+p^{k}+p^{2 k}+\ldots
$$

We have

$$
\begin{aligned}
\alpha-1 & =p^{k}+p^{2 k}+p^{3 k}+\ldots \\
& =p^{k}\left(1+p^{k}+p^{2 k}+\ldots\right) \\
& =p^{k} \alpha .
\end{aligned}
$$

Thus

$$
\alpha=\frac{-1}{p^{k}-1} \in \mathbb{Q} .
$$

Suppose that

$$
\alpha=p^{n}\left(a_{0}+a_{1} p+a_{2} p^{2}+a_{3} p^{3}+\ldots\right) .
$$

We may assume that $n=0$ so that α is a p-adic integer. If $a_{0}, a_{1}, a_{2}, \ldots$ is eventually periodic then we can find $b_{1}, b_{2}, \ldots, b_{k}$ and l such that if $n>l$ then

$$
a_{n}=b_{r},
$$

where r is the remainder after dividing k into $n-l$. It follows that

$$
\alpha=\alpha_{0}+\alpha_{1}+\cdots+\alpha_{k},
$$

where

$$
\begin{aligned}
\alpha_{0} & =a_{0}+a_{1} p+\cdots+a_{l} p^{l} \in \mathbb{Z} \\
\alpha_{1} & =b_{1} p^{l+1}\left(1+p^{k}+p^{2 k}+\ldots\right) \\
\alpha_{2} & =b_{2} p^{l+2}\left(1+p^{k}+p^{2 k}+\ldots\right) \\
\vdots & \\
\alpha_{k} & =b_{k} p^{l+k}\left(1+p^{k}+p^{2 k}+\ldots\right) .
\end{aligned}
$$

By what we have already proved, every term $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}$ is a rational number and so α is a rational number.
Now suppose that $\alpha=a / b$ is a rational number. There is no harm in assuming that $a= \pm 1$, since multiplying α by an integer preserves periodicity.
Note that Euler's theorem implies that

$$
p^{\varphi(b)} \equiv 1 \quad \bmod b,
$$

so that b divides $p^{k}-1$, where $k=\varphi(b)$. It follows that

$$
\frac{-1}{b}=\frac{c}{p_{2}^{p^{k}-1}},
$$

where c is an integer. But we already saw that the expression on the right has an eventually periodic expression as a p-number.
3.5.12. One direction is clear; if the series converges the terms must be going to zero, so that

$$
\lim _{k \rightarrow \infty}\left|a_{k}\right|_{p}=0
$$

Now suppose that

$$
\lim _{k \rightarrow \infty}\left|a_{k}\right|_{p}=0
$$

Pick $\epsilon>0$. Then we may find k_{0} such that if $k \geq k_{0}$ then

$$
\left|a_{k}\right|_{p}<\epsilon .
$$

But then

$$
\begin{aligned}
\left|\sum_{k_{0} \leq k \leq k_{1}} a_{k}\right|_{p} & =\max _{k_{0} \leq k \leq k_{1}}\left(\left|a_{k}\right|_{p}\right) \\
& <\epsilon
\end{aligned}
$$

Thus the series converges, as the partial sums are going to zero.
3.5.13. Immediate from 3.5.12.
8.2.1. First note that the last result is false as stated. Consider

$$
x^{2}+y^{2}=2 .
$$

This has the integral solution $x=y=1$. We have

$$
p=-4 \quad q=0 \quad r=8 \quad \text { so that } \quad k=-32 .
$$

k is non-zero and p is not a square and yet

$$
x^{2}+y^{2}=2
$$

has only finitely many solutions with bounded denominators.
Consider the equation:

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0 .
$$

If we consider the LHS as a polynomial in x, then we get the equation

$$
a x^{2}+(b y+d) x+\left(c y^{2}+e y+f\right)=0 .
$$

This has a rational solution in x provided

$$
(b y+d)^{2}-4 a\left(c y^{2}+e y+f\right)
$$

is a square. Expanding as a polynomial in y we get

$$
\left(b^{2}-4 a c\right) y^{2}+(2 b d-4 a e) y+\left(d^{2}-4 a f\right) .
$$

This reduces to

$$
p y^{2}+\underset{3}{2 q y}+r .
$$

We want this to be a square, so we introduce another variable z. We have

$$
z^{2}=p y^{2}+2 q y+r .
$$

Rearranging, we get

$$
p y^{2}+2 q y+\left(r-z^{2}\right)=0 .
$$

For this to have a solution we must have

$$
4 q^{2}-4 p\left(r-z^{2}\right)
$$

is a square. We introduce another variable w. Thus

$$
w^{2}=q^{2}-p r+p z^{2} .
$$

Rearranging we get

$$
w^{2}-p z^{2}=k .
$$

Suppose we have an integer solution w and z. It follows that

$$
p y^{2}+2 q y+\left(r-z^{2}\right)=0
$$

has a rational solution. By the quadratic formula, it follows that there is a solution with $2 p y \in \mathbb{Z}$. As the equation

$$
a x^{2}+(b y+d) x+\left(c y^{2}+e y+f\right)=0
$$

has a rational solution, whose discriminant is an integer. Again by the quadratic formula it follows that there is a solution such that $4 a p x$ is an integer.
Conversely suppose we have rational numbers x and y such that $4 a p x$ and $2 p y$ are integers. Then we we get a rational solution to the equation

$$
w^{2}-p z^{2}=k .
$$

As the quadratic equation

$$
p y^{2}+2 q y+\left(r-z^{2}\right)=0
$$

has a solution such that $2 p y$ is an integer, it must have a discriminant which is a square. As the discriminant is also an integer, it follows that z is an integer. But then w is an integer, as its square is an integer. Suppose that $k \neq 0$ and $p>0$ is not a square. Then there are infinitely many units. As we have one solution this equation then has infinitely many solutions.
8.2.2. We follow the notation of 8.2.1. We have

$$
\begin{aligned}
p & =6^{2}-4 \cdot 1 \cdot-4 \\
& =36+16 \\
& =52, \\
q & =6 \cdot-4-2 \cdot-12 \\
& =-24+24 \\
& =0 \\
r & =4^{2}-4 \cdot-19 \\
& =4(4+19) \\
& =92 \\
k & =-52 \cdot 92 \\
& =-2^{4} \cdot 13 \cdot 23 \\
& =-4784 .
\end{aligned}
$$

Using 8.2.1, we have to solve

$$
w^{2}-52 z^{2}=-4784 .
$$

If we rewrite this equation as

$$
w^{2}=2^{2} \cdot 13\left(z^{2}-4 \cdot 23\right)
$$

it is clear we have to choose z so that $z^{2}-4 \cdot 23$ is divisible by 13 . Trial and error gives $z=12$. In this case

$$
144-4 \cdot 23=52=4 \cdot 13
$$

Thus

$$
z=12 \quad \text { and } \quad w=4 \cdot 13=52 .
$$

We have to solve

$$
p y^{2}+2 q y+r=z^{2} .
$$

This gives

$$
52 y^{2}+92=144,
$$

so that $y^{2}=1$. Thus $y= \pm 1$. This gives

$$
x^{2}+2 x-35=0 \quad \text { and } \quad x^{2}-10 x-11=0 .
$$

This gives integral solutions

$$
(x, y)=(5,1) \quad(-7,1) \quad(11,-1) \quad \text { and } \quad(-1,-1)
$$

8.2.3. We look for the fundamental solution $\delta=x+y \sqrt{d}$ by trial and error. Reducing modulo 2, we know that x has to be odd and reducing
modulo 4, we know that y has to be even. If we try $x=3$ and $y=2$ we get a solution and this is clearly the fundamental solution,

$$
\delta=3+2 \sqrt{2}
$$

It follows that the general solution is

$$
\pm(3+2 \sqrt{2})^{n}
$$

8.2.5. Consider the equation

$$
x^{2}-2 y^{2}=-1
$$

It has one solution $x=y=1$ and so it has infinitely many in the same class. Hence it has infinitely many solutions with x and $y>0$. We have

$$
|x-y \sqrt{2}|=\frac{1}{|x+y \sqrt{2}|}
$$

which goes to zero as y goes to infinity. Thus

$$
\begin{aligned}
|x+y \sqrt{2}| & =|x-y \sqrt{2}+2 y \sqrt{2}| \\
& \leq|x-y \sqrt{2}|+2 y \sqrt{2}
\end{aligned}
$$

Thus

$$
y|x-y \sqrt{2}| \leq \frac{1+\epsilon}{2 \sqrt{2}}
$$

Let $u=\llcorner n \sqrt{2}\lrcorner$ and $v=n$. Note that

$$
u^{2}-2 v^{2}<0
$$

and if

$$
x^{2}-2 y^{2}<0 \quad \text { where } \quad x>0, y=n
$$

then

$$
x^{2}-2 y^{2} \leq u^{2}-2 v^{2}
$$

with equality if and only if $x=u$. Therefore there are infinitely many n such that

$$
|u-v \sqrt{2}|<\frac{1+\epsilon}{2 v \sqrt{2}}
$$

On the other hand, if

$$
|u-v \sqrt{2}|<\frac{1-\epsilon}{2 v \sqrt{2}}
$$

then

$$
\begin{aligned}
&\left|u^{2}-2 v^{2}\right|<\frac{1-\epsilon}{2 v \sqrt{2}}|u-v \sqrt{2}+2 v \sqrt{2}| \\
&<\frac{1}{v}+(1-\epsilon) \\
& 6
\end{aligned}
$$

If v is sufficiently large then the last term is smaller than one and $u^{2}=2 v^{2}$, impossible. Thus

$$
a_{n}>\frac{1-\epsilon}{2 \sqrt{2}}
$$

for n sufficiently large.
8.2.6. If

$$
x^{2}-d y^{2}=-1
$$

then we have

$$
x^{2} \equiv-1 \quad \bmod d
$$

But then Theorem 2.5 implies that d has a primitive representation as a sum of squares.

