MODEL ANSWERS TO THE FIFTH HOMEWORK

3.5.9. It is clear that O, is a ring. Suppose that a and 3 are two
non-zero p-adic integers. Then
a=p™(ag+ap* +...) and B =p"(bg+bip*+...),
where a¢ and by are non-zero. In this case
af =p""(co+cap+...),

where ¢y = apby mod p. In particular ¢y # 0, so that O, has no zero
divisors.
If ||, =1 then

a=ay+ap+...,

where ag # 0. It follows that we may find by such that agby =1 mod p.
Note that

(ao +ap+ -+ amp™) -bp =1 mod p,
for all n. Therefore we can solve the equation
(ap+arp+ -+ app™)zr=1 mod p"
for all m And n. This defines
B e 0, such that af =1.

Hence « is a unit. Conversely, if

af =1
then
vp(a) +1,(8) =0,
so that v,(«) = 0 and
af, = 1.
3.5.10. Suppose that
a = é
c

is a non-zero rational number. As the norm is multiplicative, we may
assume that ¢ = 1, so that a € Z is a non-zero integer. We may also
assume that @ > 0 so that a is a natural number. As the norm is
multiplicative, we may assume that a = p is a prime. In this case

1 _
|a‘q:{3_7 lfq—p

1 otherwise.
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As |a| = p the result follows.
3.5.11. Consider the p-adic integer

a=14+p"+p*+.. ..

We have
a—1=p"+p?F+p*+ . ..
=p* L+ 4+ +. )
= pra.
Thus .
a:pk—l € Q.

Suppose that
a=p"(ag+ aip+ asp® +asp® + . .. ).

We may assume that n = 0 so that « is a p-adic integer. If ag, aq, as, . ..
is eventually periodic then we can find by, bs, ..., b, and [ such that if
n > [ then
ap = bra
where 7 is the remainder after dividing k into n — [. It follows that
a=oo+ o+ -+ o,

where

a=ag+amp+---+ap €

ap =bp AP )

gy = b2pl+2(1 +pk +p2k +. )

ap = b A+ P ).

By what we have already proved, every term «g, aq, . . ., ay is a rational
number and so « is a rational number.

Now suppose that o = a/b is a rational number. There is no harm
in assuming that a = £1, since multiplying a by an integer preserves
periodicity.

Note that Euler’s theorem implies that

p?® =1 mod b,
so that b divides p* — 1, where k = o(b). It follows that
—1 c

b ph—1’
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where c is an integer. But we already saw that the expression on the
right has an eventually periodic expression as a p-number.

3.5.12. One direction is clear; if the series converges the terms must be
going to zero, so that

lim |ax|, = 0.
k—ro0

Now suppose that
lim =0.
kl |ak|p

Pick € > 0. Then we may find kg such that if £ > kg then

\ak|p < €.
But then
Y = max ()
ko<k<ki
< €.

Thus the series converges, as the partial sums are going to zero.
3.5.13. Immediate from 3.5.12.
8.2.1. First note that the last result is false as stated. Consider

2t +y? =2
This has the integral solution x =y = 1. We have
p=—4 =0 r==38 so that k= —32.
k is non-zero and p is not a square and yet
22+t =2

has only finitely many solutions with bounded denominators.
Consider the equation:

az® +bxy +cy? +do+ey+ f=0.
If we consider the LHS as a polynomial in x, then we get the equation
az® + (by + d)z + (cy* +ey + f) = 0.
This has a rational solution in x provided
(by + d)? — 4a(cy® + ey + f)
is a square. Expanding as a polynomial in y we get
(b* — dac)y* + (2bd — 4ae)y + (d* — 4af).

This reduces to

py2 + 2qy + 1.
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We want this to be a square, so we introduce another variable z. We
have

2= py® + 2qy + .
Rearranging, we get
py* +2qy + (r — %) = 0.
For this to have a solution we must have
4g> — 4p(r — 2%)
is a square. We introduce another variable w. Thus
w? = ¢ — pr + p2t.
Rearranging we get
w? —p? =k
Suppose we have an integer solution w and z. It follows that
py* +2qy + (r = 2%) =0

has a rational solution. By the quadratic formula, it follows that there
is a solution with 2py € Z. As the equation

ar® + (by + d)x + (cy®* + ey + f) =0

has a rational solution, whose discriminant is an integer. Again by the
quadratic formula it follows that there is a solution such that 4apz is
an integer.

Conversely suppose we have rational numbers x and y such that 4apx
and 2py are integers. Then we we get a rational solution to the equation

w? —p? =k
As the quadratic equation
py* +2qy + (r—2%) =0

has a solution such that 2py is an integer, it must have a discriminant
which is a square. As the discriminant is also an integer, it follows that
z is an integer. But then w is an integer, as its square is an integer.

Suppose that k £ 0 and p > 0 is not a square. Then there are infinitely
many units. As we have one solution this equation then has infinitely

many solutions.
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8.2.2. We follow the notation of 8.2.1. We have
p=62—4-1--4
=36+ 16
= 52,
g=6-—4—-2--12
=—-24+24
= ()7
r=4%—4.-19
=4(4+ 19)
=92,
k= —52-92
=-2".13.23
= —4784.
Using 8.2.1, we have to solve
w? — 522° = —4784.
If we rewrite this equation as
w? =22 13(2% — 4-23)

it is clear we have to choose z so that 22 —4-23 is divisible by 13. Trial
and error gives z = 12. In this case

144 —4-23 =52 =4-13.
Thus
z =12 and w=4-13 = 52.

We have to solve

py? 4+ 2qy +r = 2%

This gives
52y% + 92 = 144,
so that y?> = 1. Thus y = £1. This gives
?+2rx—35=0 and 2*— 10z —11=0.
This gives integral solutions
(x,y) = (5,1) (=7,1) (11,-1) and (—1,-1).

8.2.3. We look for the fundamental solution § = = + yv/d by trial and

error. Reducing modulo 2, we know that = has to be odd and reducing
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modulo 4, we know that y has to be even. If we try x = 3 and y = 2
we get a solution and this is clearly the fundamental solution,

5 =3+2V2.
It follows that the general solution is
+(342V2)"
8.2.5. Consider the equation
z? —2y% = —1.

It has one solution x = y = 1 and so it has infinitely many in the same
class. Hence it has infinitely many solutions with x and y > 0. We

have ]
- Ve = ————
|z +yv/2)

which goes to zero as y goes to infinity. Thus
=+ yV2| = |z — yvV2 + 2yV2|

< |z —yV2| + 2yv2.

Thus
1+e

2/2

ylr —yv2| <

Let u = .nv/24 and v = n. Note that
u? — 202 <0
and if
z? —2y% <0 where r>0,y=n
then
% — 2y2 < u? — 202

with equality if and only if = u. Therefore there are infinitely many

n such that 4
lu—vv2| < ‘

21)\/5'

On the other hand, if

1—¢
u— V2| <
| \ S~

then
1—c¢

202

1
< - 1—e).
~+(1-¢)

[u? — 20°| <

lu — vV2 + 20V/2|
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If v is sufficiently large then the last term is smaller than one and
u? = 202, impossible. Thus
1—e€

2v/2

ay >

for n sufficiently large.
8.2.6. If
22— dy? = —1
then we have
z2=—-1 mod d.
But then Theorem 2.5 implies that d has a primitive representation as
a sum of squares.



