
MODEL ANSWERS TO THE FOURTH HOMEWORK

8.1.6. (a) Let

f(x1 + h) = f(x1) + f ′(x0)h+
1

2
f ′′(x1)h

2 + · · ·+ 1

n
f (n)(x1)h

n,

be the Taylor expansion of f(x), centred at x1. As observed in 104A,
the coefficients

ai =
f (k)(x1)

k
of the Taylor series expansion are all integers. By assumption

f(x1) ≡ 0 mod p2a+1.

If h = tpa+1 then all but the first two terms of the Taylor series expan-
sion are divisible by p2a+2. Thus we want to find t such that

0 = f(x1 + tpa+1) ≡ f(x1) + f ′(x1)tp
a+1 mod p2a+2.

Rearranging, gives

tpa+1f ′(x1) ≡ −f(x1) mod p2a+1.

By assumption pa+1f ′(x0) is divisible by p2a+1 but no higher power of
p. As f(x1) is also divisible by p2a+1, we can divide and work modulo
p,

t ≡ −f(x1)

pa+1f ′(x1)
mod p.

With this choice of t, x2 = x1 + tpa+1 satisfies

f(x2) ≡ 0 mod p2a+2 where x2 ≡ x1 mod pa+1.

The result then follows by an obvious induction.
(b) We want to solve the equation

x2 ≡ b mod 2e,

for e ≥ 3. Let f(x) = x2 − b. Then f ′(x) = 2x. We want to start with
e = 3. Thus we take a = 1, so that e = 2 · 1 + 1 = 3. Using part (a), if
we can find x1 odd such that

x21 ≡ a mod 23

then we can find solutions modulo all higher powers of 2.
If one unwraps the statement of Theorem 4.14 we get an equivalent
result. We want to know that

a ≡ 1 mod (2e, 8) = 8.
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But if x1 is odd then x21 ≡ 1 mod 8.
(c) Suppose that

ax2 + by2 + cz2 ≡ 0 mod 8,

where x, y and z are all odd. Then x2 ≡ y2 ≡ z2 ≡ 1 mod 8. If a, b
and c are all even then a ≡ b ≡ c ≡ ±2 mod 8. This contradicts the
fact that

ax2 + by2 + cz2 ≡ 0 mod 8.

Possibly rearranging, we may assume that a is odd, so that ax2 is odd.
Let

α = −by
2 + cz2

a
.

By assumption there is a solution to the equation

x2 ≡ α mod 8.

By part (b) we can then solve this equation modulo any power of 2
and this gives a 2-adic solution to the original equation, with the same
values of y and z.
8.1.8. We are given a homogeneous quadratic equation in two variables,

ax2 + bxy + cy2 = 0.

If we have a solution over the integers, then we certainly have a real
solution and a p-adic solution for every prime p.
Conversely suppose there is a real solution and a p-adic integer solution,
for every prime p. As we have a homogeneous equation, it suffices to
exhibit a rational solution, since then clearing denominators, we get an
integer solution.
We first complete the square. If we multiply through by 4a then we
get

(2a)2x2 + 4abxy + 4acy2 = 0.

Replacing x by 2ax we may assume that a = 1 and b is even, so that
relabelling we have

x2 + 2bxy + cy2 = 0.

Completing the square we get the equation

(x+ by)2 + (4c− b2)y2 = 0.

Subsituting for x+ by we are reduced to an equation of the form

x2 − by2 = 0.

As there a real solution we may assume that b > 0.
Consider the equation

x2 = b.
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By assumption if we reduce modulo p then the equation

x2 = by2 mod p,

has a non-trivial solution. Thus the equation

z2 ≡ b mod p,

has a solution. But then Theorem 5.10 implies that b is a square and
it is clear we can solve the original equation.
8.1.10. If we let

u =
(x+ 1)

y
and v =

1

x

then note that

x =
1

v
and y =

(1 + v)

u
.

Thus we get a birational transformation of the plane, not just a curve.
Now consider how the equation

(x+ 2)y2 = x2(x+ 1)2

transforms to an equation connecting u and v. Clearly we have

(x+ 2)2 = x2u2.

Substituting for x we get (
1

v
+ 2

)2

=
1

v2
u2,

so that
(1 + 2v)2 = u2.

Clearly this is the equation for a conic.
8.1.11. If we substitute

u =
x2

x2 + y2
and v =

xy

x2 + y2

then we get

u2 + v2 − u =
x4

(x2 + y2)2
+

x2y2

(x2 + y2)2
− x2

x2 + y2

=
x4 + x2y2 − x2(x2 + y2)

(x2 + y2)2

= 0.

Now suppose we are given u and v such that u2 + v2 = u.
8.1.12. Suppose that

x =
t(2t2 + 1)

4t4 + 1
and y =

t(2t2 − 1)

4t4 + 1
.
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It is clear that if t is rational then x and y are rational.
Suppose that x and y are rational. We want to show that we can pick t
rational. There are two cases. If x 6= y then it is clear that t is rational
from the equation

x2 + y2 = t(x− y).

Suppose that x = y. Since we have

2(x2 + y2)2 = x2 − y2

It follows that x2 + y2 = 0, so that x = y = 0. But this corresponds to
t = 0.
3.5.1. By definition |0|p = 0. As the reciprocal of any positive real is a
positive real, (ii) is clear for | |.
Suppose we are given two rational numbers a/b and c/d. Then

νp(ac/bd) = νp(ac)− νp(bd)

= νp(a) + νp(c)− νp(b)− νp(d)

= νp(a)− νp(c) + νp(b)− νp(d)

= νp(a/c) + νp(b/d).

It follows that ∣∣∣ac
bd

∣∣∣
p

=
∣∣∣a
b

∣∣∣
p
·
∣∣∣ c
d

∣∣∣
p
.

Suppose that we have two rational numbers q1 and q2. Then we may
write

q1 = pe
a

b
and q2 = pf

c

d
,

so that νp(q1) = e and νp(q2) = f . But then

νp(q1 + q2) ≥ min(e, f),

with equality unless e = f . It follows that

|q1 + q2|p ≤ max(|q1|p, |q2|p),

with equality unless |q1|p = |q2|p.
3.5.2. We have to show that a1, a2, . . . and b1, b2, . . . generate the same
equivalence class. This is equivalent to the statement that a1, a2, . . .
and b1, b2, . . . are equivalent Cauchy sequences, that is, the difference
c1, c2, . . . is a null sequence.
Pick ε > 0. We may find n0 such that if m and n > n0 then |an−am| <
ε. Given n, by assumption bn = am for some m ≥ n. If n > n0 then
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m > n0 and so

|cn| = |an − bn|
= |an − am|
< ε.

It follows that c1, c2, . . . is indeed a null sequence.
3.5.6. (i) and (ii) are clear. (iii) does not hold. For example, if g = 4
then |2|4 = 1 but |4|4 = 1/4 6= |2|24. (iv) and (v) also hold; the proof
given for primes works equally well for composite numbers.
Let an = 3n(2n−2n−1) and bn = 2n(3n−3n−1). Both of these sequences are
Cauchy. We have

|an|6 = 1 and |bn|6 = 1,

so that neither a1, a2, . . . nor b1, b2, . . . are null sequences but if cn =
anbn then cn = 6n2(2n−2n−1)3(3n−3n−1) so that

|cn|6 =
1

6n
,

and c1, c2, . . . is a null sequence.
3.5.7. (a) 127 = 125 + 2 and 125 = 53, so that

127 = 2 + 0 · 5 + 0 · 52 + 1 · 53 + 0 · 54 + . . . .

−2 = 3− 5. Now −1 = 4− 5 and so

−2 = 3 + 4 · 5 + 4 · 52 + 4 · 53 + . . . .

Now 5/16 = 5(1/16), so we just have to find the reduced expansion of
1/16. Now

16 = 1 + 3 · 5.
Thus

1

16
=

1

1 + 3 · 5
= 1− 3 · 5 + 9 · 52 − 27 · 53 + . . .

= 1 + 2 · 5 + 3 · 52 + 4 · 53 + . . .

so that
5

16
= 1 · 5 + 2 · 52 + 3 · 53 + 4 · 54 + . . . ,

is the reduced expansion.

3

5
=

1

5
(3 + 0 · 5 + 0 · 52 + . . . )

is the reduced expansion.
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(b) x2 = 1 has integer solutions x = ±1. These are the only solutions
in Q5 and so

1 + 0 · 5 + 0 · 52 + . . . and 4 + 4 · 5 + 4 · 52 + . . . ,

are the reduced expansions of the roots of x2 = 1.
Start with the solution x0 = 2 to the equation x2 ≡ −1 mod 5. Let
f(x) = x2 + 1. f ′(x) = 2x and so f ′(x0) = 4. On the other hand
f(x0) = 5 = 5 · 1. Suppose that x1 = 2 + 5t. Then t satisfies the
equation

4t ≡ −1 mod 5,

so that t = 1 and x1 = 2 + 1 · 5. Thus f(x1) = 49 + 1 = 2 · 52. Suppose
that x2 = 2 + 1 · 5 + t · 52. Then t satisfies the equation

4t ≡ −2 mod 5,

so that t = 2 and x1 = 2 + 1 · 5 + 2 · 52. Thus

α = 2 + 1 · 5 + 2 · 52 + . . .

is one of 5-adic roots of x2 + 1 = 0.
3.5.8. (a) If p2|a then a = p2b for some b ∈ Z. If x2 = b has a solution
β ∈ Qp then α = pβ ∈ Qp is a solution to the original equation x2 = a.
Conversely if α ∈ Qp is a solution to x2 = a then β = α/p is a solution
to x2 = b.
(b) If (

a

p

)
= 1

then we may find a solution x1 to the equation x2 ≡ a mod p. As p
is odd y1 = p − x1 is a different solution. It follows that we may find
integers xn and yn that are solutions to the equation x2 ≡ a mod pn

and such that

xn ≡ xm mod pmin(m,n) and yn ≡ ym mod pmin(m,n).

It follows that x1, x2, . . . and y1, y2, . . . are Cauchy sequences so that
they define elements ξ and γ of the p-adic integers Op. They are clearly
not equal, since x1 6= y1 mod p. As xn and yn are solutions to the
equation x2 ≡ a mod pn it follows that∣∣ξ2 − a∣∣

p
<

1

pn
and

∣∣γ2 − a∣∣
p
<

1

pn

so that ξ2 = a and γ2 = a so that ξ and γ in Qp are two different
solutions of x2 = a.
On the other hand since we have a field there are at most two solutions.
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(c) If (
a

p

)
= −1

then the equation x2 ≡ a mod p has no solutions. If ξ ∈ Qp were a
solution to x2 = a then ξ would be a p-adic integer. If

ξ = x0 + x1 · p+ . . . ,

then x0 is a solution of x2 ≡ a mod p. Thus x2 = a has no solutions
in Qp.
Now suppose that p|a. If ξ2 = a and ξ ∈ Q then

2νp(α) = νp(a)

= 1,

clearly not possible.
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