MODEL ANSWERS TO THE FOURTH HOMEWORK

8.1.6. (a) Let

$$
f\left(x_{1}+h\right)=f\left(x_{1}\right)+f^{\prime}\left(x_{0}\right) h+\frac{1}{2} f^{\prime \prime}\left(x_{1}\right) h^{2}+\cdots+\frac{1}{n} f^{(n)}\left(x_{1}\right) h^{n}
$$

be the Taylor expansion of $f(x)$, centred at x_{1}. As observed in 104A, the coefficients

$$
a_{i}=\frac{f^{(k)}\left(x_{1}\right)}{k}
$$

of the Taylor series expansion are all integers. By assumption

$$
f\left(x_{1}\right) \equiv 0 \quad \bmod p^{2 a+1}
$$

If $h=t p^{a+1}$ then all but the first two terms of the Taylor series expansion are divisible by $p^{2 a+2}$. Thus we want to find t such that

$$
0=f\left(x_{1}+t p^{a+1}\right) \equiv f\left(x_{1}\right)+f^{\prime}\left(x_{1}\right) t p^{a+1} \quad \bmod p^{2 a+2} .
$$

Rearranging, gives

$$
t p^{a+1} f^{\prime}\left(x_{1}\right) \equiv-f\left(x_{1}\right) \quad \bmod p^{2 a+1}
$$

By assumption $p^{a+1} f^{\prime}\left(x_{0}\right)$ is divisible by $p^{2 a+1}$ but no higher power of p. As $f\left(x_{1}\right)$ is also divisible by $p^{2 a+1}$, we can divide and work modulo p,

$$
t \equiv \frac{-f\left(x_{1}\right)}{p^{a+1} f^{\prime}\left(x_{1}\right)} \quad \bmod p
$$

With this choice of $t, x_{2}=x_{1}+t p^{a+1}$ satisfies

$$
f\left(x_{2}\right) \equiv 0 \quad \bmod p^{2 a+2} \quad \text { where } \quad x_{2} \equiv x_{1} \quad \bmod p^{a+1}
$$

The result then follows by an obvious induction.
(b) We want to solve the equation

$$
x^{2} \equiv b \quad \bmod 2^{e},
$$

for $e \geq 3$. Let $f(x)=x^{2}-b$. Then $f^{\prime}(x)=2 x$. We want to start with $e=3$. Thus we take $a=1$, so that $e=2 \cdot 1+1=3$. Using part (a), if we can find x_{1} odd such that

$$
x_{1}^{2} \equiv a \quad \bmod 2^{3}
$$

then we can find solutions modulo all higher powers of 2 .
If one unwraps the statement of Theorem 4.14 we get an equivalent result. We want to know that

$$
a \equiv 1 \quad \bmod \left(2^{e}, 8\right)=8
$$

But if x_{1} is odd then $x_{1}^{2} \equiv 1 \bmod 8$.
(c) Suppose that

$$
a x^{2}+b y^{2}+c z^{2} \equiv 0 \quad \bmod 8
$$

where x, y and z are all odd. Then $x^{2} \equiv y^{2} \equiv z^{2} \equiv 1 \bmod 8$. If a, b and c are all even then $a \equiv b \equiv c \equiv \pm 2 \bmod 8$. This contradicts the fact that

$$
a x^{2}+b y^{2}+c z^{2} \equiv 0 \quad \bmod 8
$$

Possibly rearranging, we may assume that a is odd, so that $a x^{2}$ is odd. Let

$$
\alpha=-\frac{b y^{2}+c z^{2}}{a} .
$$

By assumption there is a solution to the equation

$$
x^{2} \equiv \alpha \quad \bmod 8
$$

By part (b) we can then solve this equation modulo any power of 2 and this gives a 2 -adic solution to the original equation, with the same values of y and z.
8.1.8. We are given a homogeneous quadratic equation in two variables,

$$
a x^{2}+b x y+c y^{2}=0
$$

If we have a solution over the integers, then we certainly have a real solution and a p-adic solution for every prime p.
Conversely suppose there is a real solution and a p-adic integer solution, for every prime p. As we have a homogeneous equation, it suffices to exhibit a rational solution, since then clearing denominators, we get an integer solution.
We first complete the square. If we multiply through by $4 a$ then we get

$$
(2 a)^{2} x^{2}+4 a b x y+4 a c y^{2}=0
$$

Replacing x by $2 a x$ we may assume that $a=1$ and b is even, so that relabelling we have

$$
x^{2}+2 b x y+c y^{2}=0 .
$$

Completing the square we get the equation

$$
(x+b y)^{2}+\left(4 c-b^{2}\right) y^{2}=0
$$

Subsituting for $x+b y$ we are reduced to an equation of the form

$$
x^{2}-b y^{2}=0
$$

As there a real solution we may assume that $b>0$.
Consider the equation

$$
x^{2}=b
$$

By assumption if we reduce modulo p then the equation

$$
x^{2}=b y^{2} \quad \bmod p,
$$

has a non-trivial solution. Thus the equation

$$
z^{2} \equiv b \quad \bmod p,
$$

has a solution. But then Theorem 5.10 implies that b is a square and it is clear we can solve the original equation.
8.1.10. If we let

$$
u=\frac{(x+1)}{y} \quad \text { and } \quad v=\frac{1}{x}
$$

then note that

$$
x=\frac{1}{v} \quad \text { and } \quad y=\frac{(1+v)}{u} .
$$

Thus we get a birational transformation of the plane, not just a curve.
Now consider how the equation

$$
(x+2) y^{2}=x^{2}(x+1)^{2}
$$

transforms to an equation connecting u and v. Clearly we have

$$
(x+2)^{2}=x^{2} u^{2}
$$

Substituting for x we get

$$
\left(\frac{1}{v}+2\right)^{2}=\frac{1}{v^{2}} u^{2},
$$

so that

$$
(1+2 v)^{2}=u^{2} .
$$

Clearly this is the equation for a conic.
8.1.11. If we substitute

$$
u=\frac{x^{2}}{x^{2}+y^{2}} \quad \text { and } \quad v=\frac{x y}{x^{2}+y^{2}}
$$

then we get

$$
\begin{aligned}
u^{2}+v^{2}-u & =\frac{x^{4}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\frac{x^{2}}{x^{2}+y^{2}} \\
& =\frac{x^{4}+x^{2} y^{2}-x^{2}\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =0 .
\end{aligned}
$$

Now suppose we are given u and v such that $u^{2}+v^{2}=u$.
8.1.12. Suppose that

$$
x=\frac{t\left(2 t^{2}+1\right)}{4 t^{4}+1} \quad \text { and } \quad y=\frac{t\left(2 t^{2}-1\right)}{4 t^{4}+1} .
$$

It is clear that if t is rational then x and y are rational.
Suppose that x and y are rational. We want to show that we can pick t rational. There are two cases. If $x \neq y$ then it is clear that t is rational from the equation

$$
x^{2}+y^{2}=t(x-y) .
$$

Suppose that $x=y$. Since we have

$$
2\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}
$$

It follows that $x^{2}+y^{2}=0$, so that $x=y=0$. But this corresponds to $t=0$.
3.5.1. By definition $|0|_{p}=0$. As the reciprocal of any positive real is a positive real, (ii) is clear for \mid.
Suppose we are given two rational numbers a / b and c / d. Then

$$
\begin{aligned}
\nu_{p}(a c / b d) & =\nu_{p}(a c)-\nu_{p}(b d) \\
& =\nu_{p}(a)+\nu_{p}(c)-\nu_{p}(b)-\nu_{p}(d) \\
& =\nu_{p}(a)-\nu_{p}(c)+\nu_{p}(b)-\nu_{p}(d) \\
& =\nu_{p}(a / c)+\nu_{p}(b / d) .
\end{aligned}
$$

It follows that

$$
\left|\frac{a c}{b d}\right|_{p}=\left|\frac{a}{b}\right|_{p} \cdot\left|\frac{c}{d}\right|_{p} .
$$

Suppose that we have two rational numbers q_{1} and q_{2}. Then we may write

$$
q_{1}=p^{e} \frac{a}{b} \quad \text { and } \quad q_{2}=p^{f} \frac{c}{d}
$$

so that $\nu_{p}\left(q_{1}\right)=e$ and $\nu_{p}\left(q_{2}\right)=f$. But then

$$
\nu_{p}\left(q_{1}+q_{2}\right) \geq \min (e, f)
$$

with equality unless $e=f$. It follows that

$$
\left|q_{1}+q_{2}\right|_{p} \leq \max \left(\left|q_{1}\right|_{p},\left|q_{2}\right|_{p}\right)
$$

with equality unless $\left|q_{1}\right|_{p}=\left|q_{2}\right|_{p}$.
3.5.2. We have to show that a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots generate the same equivalence class. This is equivalent to the statement that a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots are equivalent Cauchy sequences, that is, the difference c_{1}, c_{2}, \ldots is a null sequence.
Pick $\epsilon>0$. We may find n_{0} such that if m and $n>n_{0}$ then $\left|a_{n}-a_{m}\right|<$ ϵ. Given n, by assumption $b_{n}=a_{m}$ for some $m \geq n$. If $n>n_{0}$ then
$m>n_{0}$ and so

$$
\begin{aligned}
\left|c_{n}\right| & =\left|a_{n}-b_{n}\right| \\
& =\left|a_{n}-a_{m}\right| \\
& <\epsilon .
\end{aligned}
$$

It follows that c_{1}, c_{2}, \ldots is indeed a null sequence.
3.5.6. (i) and (ii) are clear. (iii) does not hold. For example, if $g=4$ then $|2|_{4}=1$ but $|4|_{4}=1 / 4 \neq|2|_{4}^{2}$. (iv) and (v) also hold; the proof given for primes works equally well for composite numbers.
Let $a_{n}=3^{n\left(2^{n}-2^{n-1}\right)}$ and $b_{n}=2^{n\left(3^{n}-3^{n-1}\right)}$. Both of these sequences are Cauchy. We have

$$
\left|a_{n}\right|_{6}=1 \quad \text { and } \quad\left|b_{n}\right|_{6}=1
$$

so that neither a_{1}, a_{2}, \ldots nor b_{1}, b_{2}, \ldots are null sequences but if $c_{n}=$ $a_{n} b_{n}$ then $c_{n}=6^{n} 2^{\left(2^{n}-2^{n-1}\right)} 3^{\left(3^{n}-3^{n-1}\right)}$ so that

$$
\left|c_{n}\right|_{6}=\frac{1}{6^{n}}
$$

and c_{1}, c_{2}, \ldots is a null sequence.
3.5.7. (a) $127=125+2$ and $125=5^{3}$, so that

$$
127=2+0 \cdot 5+0 \cdot 5^{2}+1 \cdot 5^{3}+0 \cdot 5^{4}+\ldots
$$

$-2=3-5$. Now $-1=4-5$ and so

$$
-2=3+4 \cdot 5+4 \cdot 5^{2}+4 \cdot 5^{3}+\ldots
$$

Now $5 / 16=5(1 / 16)$, so we just have to find the reduced expansion of $1 / 16$. Now

$$
16=1+3 \cdot 5
$$

Thus

$$
\begin{aligned}
\frac{1}{16} & =\frac{1}{1+3 \cdot 5} \\
& =1-3 \cdot 5+9 \cdot 5^{2}-27 \cdot 5^{3}+\ldots \\
& =1+2 \cdot 5+3 \cdot 5^{2}+4 \cdot 5^{3}+\ldots
\end{aligned}
$$

so that

$$
\frac{5}{16}=1 \cdot 5+2 \cdot 5^{2}+3 \cdot 5^{3}+4 \cdot 5^{4}+\ldots
$$

is the reduced expansion.

$$
\frac{3}{5}=\frac{1}{5}\left(3+0 \cdot 5+0 \cdot 5^{2}+\ldots\right)
$$

is the reduced expansion.
(b) $x^{2}=1$ has integer solutions $x= \pm 1$. These are the only solutions in \mathbb{Q}_{5} and so

$$
1+0 \cdot 5+0 \cdot 5^{2}+\ldots \quad \text { and } \quad 4+4 \cdot 5+4 \cdot 5^{2}+\ldots,
$$

are the reduced expansions of the roots of $x^{2}=1$.
Start with the solution $x_{0}=2$ to the equation $x^{2} \equiv-1 \bmod 5$. Let $f(x)=x^{2}+1 . \quad f^{\prime}(x)=2 x$ and so $f^{\prime}\left(x_{0}\right)=4$. On the other hand $f\left(x_{0}\right)=5=5 \cdot 1$. Suppose that $x_{1}=2+5 t$. Then t satisfies the equation

$$
4 t \equiv-1 \quad \bmod 5,
$$

so that $t=1$ and $x_{1}=2+1 \cdot 5$. Thus $f\left(x_{1}\right)=49+1=2 \cdot 5^{2}$. Suppose that $x_{2}=2+1 \cdot 5+t \cdot 5^{2}$. Then t satisfies the equation

$$
4 t \equiv-2 \bmod 5
$$

so that $t=2$ and $x_{1}=2+1 \cdot 5+2 \cdot 5^{2}$. Thus

$$
\alpha=2+1 \cdot 5+2 \cdot 5^{2}+\ldots
$$

is one of 5 -adic roots of $x^{2}+1=0$.
3.5.8. (a) If $p^{2} \mid a$ then $a=p^{2} b$ for some $b \in \mathbb{Z}$. If $x^{2}=b$ has a solution $\beta \in \mathbb{Q}_{p}$ then $\alpha=p \beta \in \mathbb{Q}_{p}$ is a solution to the original equation $x^{2}=a$. Conversely if $\alpha \in \mathbb{Q}_{p}$ is a solution to $x^{2}=a$ then $\beta=\alpha / p$ is a solution to $x^{2}=b$.
(b) If

$$
\left(\frac{a}{p}\right)=1
$$

then we may find a solution x_{1} to the equation $x^{2} \equiv a \bmod p$. As p is odd $y_{1}=p-x_{1}$ is a different solution. It follows that we may find integers x_{n} and y_{n} that are solutions to the equation $x^{2} \equiv a \bmod p^{n}$ and such that

$$
x_{n} \equiv x_{m} \quad \bmod p^{\min (m, n)} \quad \text { and } \quad y_{n} \equiv y_{m} \quad \bmod p^{\min (m, n)}
$$

It follows that x_{1}, x_{2}, \ldots and y_{1}, y_{2}, \ldots are Cauchy sequences so that they define elements ξ and γ of the p-adic integers \mathcal{O}_{p}. They are clearly not equal, since $x_{1} \neq y_{1} \bmod p$. As x_{n} and y_{n} are solutions to the equation $x^{2} \equiv a \bmod p^{n}$ it follows that

$$
\left|\xi^{2}-a\right|_{p}<\frac{1}{p^{n}} \quad \text { and } \quad\left|\gamma^{2}-a\right|_{p}<\frac{1}{p^{n}}
$$

so that $\xi^{2}=a$ and $\gamma^{2}=a$ so that ξ and γ in \mathbb{Q}_{p} are two different solutions of $x^{2}=a$.
On the other hand since we have a field there are at most two solutions.
(c) If

$$
\left(\frac{a}{p}\right)=-1
$$

then the equation $x^{2} \equiv a \bmod p$ has no solutions. If $\xi \in \mathbb{Q}_{p}$ were a solution to $x^{2}=a$ then ξ would be a p-adic integer. If

$$
\xi=x_{0}+x_{1} \cdot p+\ldots,
$$

then x_{0} is a solution of $x^{2} \equiv a \bmod p$. Thus $x^{2}=a$ has no solutions in \mathbb{Q}_{p}.
Now suppose that $p \mid a$. If $\xi^{2}=a$ and $\xi \in \mathbb{Q}$ then

$$
\begin{aligned}
2 \nu_{p}(\alpha) & =\nu_{p}(a) \\
& =1,
\end{aligned}
$$

clearly not possible.

