
MODEL ANSWERS TO THE THIRD HOMEWORK

8.1.1. First note that a = 18, b = 20 and c = −35 have no common
factors. a is divisible by 9 = 32 and b is divisible by 4 = 22. So we are
reduced to considering a = 2, b = 5 and c = −35. 5 = (5,−35) is a
common factor of b and c. So we are reduced to considering a = 10,
b = 1 and c = −7. We are now ready to apply Legendre’s theorem.
a, b and c don’t all have the same sign. We now check whether −ab is
a residue of −c and −bc is a residue of a. −10 modulo 7 is the same as
4 modulo 7, which is visibly a residue of 7. However 7 is not a residue
of 10, since

12 = 1 22 = 4 32 = 9 42 ≡ 6 mod 10 and 52 ≡ 5 mod 10.

Thus there are no solutions.
8.1.2. Suppose x, y and z is a solution of

ax2 + by2 + cz2 = 0,

with x, y and z not all zero. Suppose that z = 0. If p|a then p|by2.
But then p|y2, so that p2|ax2.
It is enough to find x, y and z non-zero such that

max(x, y, z) < 2 max(a2, b2, c2),

since we can always flip the sign of any variable.
Possibly switching x, y and z and flipping the sign of a, b and c, we
may assume that a > 0, b > 0 and c > 0.
We must have z > 0 and at least one of x and y > 0. Suppose that
y > 0 and yet x = 0. Then by2 = cz2. The only possibility is that b|z
but then b2|cz2, so that b|y2. This is only possible if b = 1. Similarly
c = 1. In this case we could take the solution x = 1, y = 1 and
In the proof of (7.1) we find x, y and z such that

|x| <
√
|bc| |y| <

√
|ca| and |z| <

√
|ab|.

and either

ax2+by2+cz2 = 0 or a(az+by)2+b(yz−ax)2+c(z2+ab)2 = 0.

Suppose we have the former case. Using the inequality between arith-
metic and geometric means we get

x ≤ b− c

2
y ≤ a− c

2
and z ≤ a + b

2
.
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Since a ≤ a2 and the average of two of a2, b2 and c2 is at most the
maximum, it follows easily that

max(x, y, z) < 2 max(a2, b2, c2).

In the latter case

|xz + by| <
√
−acb + b

√
−ac

= 2
√
−acb

≤ b(a− c)

≤ 2 max(a2, b2, c2).

We obtain the same bound for yz − ax by a symmetric argument. We
have

|z2 + ab| < ab + ab

= 2ab

≤ 2 max(a2, b2, c2).

8.1.3. We may as well assume that c = 1. As x2 + y2 = z2 it suffices to
check that x, and y have no common factors. As a and b have opposite
parity, it follows that x is odd. Suppose p|a is an odd prime. If p|x
then p|b, which contradicts the fact that (a, b) = 1. Thus x and y are
coprime.
8.1.5. We know all of the solutions are given by

x = c(a2 − b2) y = 2abc and z = c(a2 + b2),

where a and b are integers and 2c ∈ Z. If we assume that (x, y) = 1
and x is odd then y is even, (a, b) = 1 and c± 1. If z > 0 then c = 1.
We may as well assume that a > 0 in which case b > 0. Finally we
want a > b.
This gives us all solutions with x odd. To get all solutions with x even
just switch x and y.
8.1.7. We first make the change of variables:

x = x′ + y y = y′ and z = z′.

This reduces our quadratic to

x2 + 2y2 + 5z2 + 100yz + 40xz.

Now make the change of variables:

x = x′ − 20z y = y′ and z = z′.

This reduces our quadratic to

x2 + 2y2 − 395z2 + 100yz
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Now make the change of variables:

x = x′ y = y′ − 25z and z = z′.

This reduces our quadratic to

x2 + 2y2 − 1645z2.

8.1.9. We use the same method as in class. Look at lines through
(−
√
r, 0) of slope m,

y = m(x +
√
r).

Plugging this into the equation for the circle we get

x2 + m2(x +
√
r)2 = r.

Thus
(1 + m2)x2 + m

√
rx + m2r = r.

It follows that

x2 +
m

1 + m2
x + r

m2 − 1

1 + m2
= 0.

The root not corresponding to x = −
√
r is then

x =
√
r

1−m2

1 + m2
so that y =

√
r

2m

1 + m2
.

Suppose that we could find a parametrisation by rational functions
with rational parameters

(x, y) = (
a(t)

b(t)
,
c(t)

d(t)
)

for the circle x2 + y2 = 3. Here a(t), b(t), c(t) and d(t) are polynomials
in t. b(t) and d(t) have only finitely many zeroes. Pick a rational
number t = t0 not one of these zeroes. Then we get a rational point
(x0, y0) on the circle x2 + y2 = 3.
Clearing denominators in the usual way we would get an integral solu-
tion of x2 +y2−3z2 = 0. By Legendre this would imply −1 is a residue
of 3. But −1 ≡ 2 mod 3 and this is not a residue of 3.
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