MODEL ANSWERS TO THE THIRD HOMEWORK

8.1.1. First note that $a=18, b=20$ and $c=-35$ have no common factors. a is divisible by $9=3^{2}$ and b is divisible by $4=2^{2}$. So we are reduced to considering $a=2, b=5$ and $c=-35.5=(5,-35)$ is a common factor of b and c. So we are reduced to considering $a=10$, $b=1$ and $c=-7$. We are now ready to apply Legendre's theorem.
a, b and c don't all have the same sign. We now check whether $-a b$ is a residue of $-c$ and $-b c$ is a residue of a. -10 modulo 7 is the same as 4 modulo 7 , which is visibly a residue of 7 . However 7 is not a residue of 10 , since
$1^{2}=1 \quad 2^{2}=4 \quad 3^{2}=9 \quad 4^{2} \equiv 6 \quad \bmod 10 \quad$ and $\quad 5^{2} \equiv 5 \quad \bmod 10$.
Thus there are no solutions.
8.1.2. Suppose x, y and z is a solution of

$$
a x^{2}+b y^{2}+c z^{2}=0,
$$

with x, y and z not all zero. Suppose that $z=0$. If $p \mid a$ then $p \mid b y^{2}$. But then $p \mid y^{2}$, so that $p^{2} \mid a x^{2}$.
It is enough to find x, y and z non-zero such that

$$
\max (x, y, z)<2 \max \left(a^{2}, b^{2}, c^{2}\right)
$$

since we can always flip the sign of any variable.
Possibly switching x, y and z and flipping the sign of a, b and c, we may assume that $a>0, b>0$ and $c>0$.
We must have $z>0$ and at least one of x and $y>0$. Suppose that $y>0$ and yet $x=0$. Then $b y^{2}=c z^{2}$. The only possibility is that $b \mid z$ but then $b^{2} \mid c z^{2}$, so that $b \mid y^{2}$. This is only possible if $b=1$. Similarly $c=1$. In this case we could take the solution $x=1, y=1$ and In the proof of (7.1) we find x, y and z such that

$$
|x|<\sqrt{|b c|} \quad|y|<\sqrt{|c a|} \quad \text { and } \quad|z|<\sqrt{|a b|} .
$$

and either
$a x^{2}+b y^{2}+c z^{2}=0 \quad$ or $\quad a(a z+b y)^{2}+b(y z-a x)^{2}+c\left(z^{2}+a b\right)^{2}=0$.
Suppose we have the former case. Using the inequality between arithmetic and geometric means we get

$$
x \leq \frac{b-c}{2} \quad y \leq \frac{a-c}{2} \quad \text { and } \quad z \leq \frac{a+b}{2}
$$

Since $a \leq a^{2}$ and the average of two of a^{2}, b^{2} and c^{2} is at most the maximum, it follows easily that

$$
\max (x, y, z)<2 \max \left(a^{2}, b^{2}, c^{2}\right)
$$

In the latter case

$$
\begin{aligned}
|x z+b y| & <\sqrt{-a c} b+b \sqrt{-a c} \\
& =2 \sqrt{-a c} b \\
& \leq b(a-c) \\
& \leq 2 \max \left(a^{2}, b^{2}, c^{2}\right) .
\end{aligned}
$$

We obtain the same bound for $y z-a x$ by a symmetric argument. We have

$$
\begin{aligned}
\left|z^{2}+a b\right| & <a b+a b \\
& =2 a b \\
& \leq 2 \max \left(a^{2}, b^{2}, c^{2}\right) .
\end{aligned}
$$

8.1.3. We may as well assume that $c=1$. As $x^{2}+y^{2}=z^{2}$ it suffices to check that x, and y have no common factors. As a and b have opposite parity, it follows that x is odd. Suppose $p \mid a$ is an odd prime. If $p \mid x$ then $p \mid b$, which contradicts the fact that $(a, b)=1$. Thus x and y are coprime.
8.1.5. We know all of the solutions are given by

$$
x=c\left(a^{2}-b^{2}\right) \quad y=2 a b c \quad \text { and } \quad z=c\left(a^{2}+b^{2}\right)
$$

where a and b are integers and $2 c \in \mathbb{Z}$. If we assume that $(x, y)=1$ and x is odd then y is even, $(a, b)=1$ and $c \pm 1$. If $z>0$ then $c=1$. We may as well assume that $a>0$ in which case $b>0$. Finally we want $a>b$.
This gives us all solutions with x odd. To get all solutions with x even just switch x and y.
8.1.7. We first make the change of variables:

$$
x=x^{\prime}+y \quad y=y^{\prime} \quad \text { and } \quad z=z^{\prime} .
$$

This reduces our quadratic to

$$
x^{2}+2 y^{2}+5 z^{2}+100 y z+40 x z
$$

Now make the change of variables:

$$
x=x^{\prime}-20 z \quad y=y^{\prime} \quad \text { and } \quad z=z^{\prime} .
$$

This reduces our quadratic to

$$
x^{2}+2 y^{2}-395 z^{2}+100 y z
$$

Now make the change of variables:

$$
x=x^{\prime} \quad y=y^{\prime}-25 z \quad \text { and } \quad z=z^{\prime} .
$$

This reduces our quadratic to

$$
x^{2}+2 y^{2}-1645 z^{2} .
$$

8.1.9. We use the same method as in class. Look at lines through $(-\sqrt{r}, 0)$ of slope m,

$$
y=m(x+\sqrt{r}) .
$$

Plugging this into the equation for the circle we get

$$
x^{2}+m^{2}(x+\sqrt{r})^{2}=r .
$$

Thus

$$
\left(1+m^{2}\right) x^{2}+m \sqrt{r} x+m^{2} r=r .
$$

It follows that

$$
x^{2}+\frac{m}{1+m^{2}} x+r \frac{m^{2}-1}{1+m^{2}}=0 .
$$

The root not corresponding to $x=-\sqrt{r}$ is then

$$
x=\sqrt{r} \frac{1-m^{2}}{1+m^{2}} \quad \text { so that } \quad y=\sqrt{r} \frac{2 m}{1+m^{2}} .
$$

Suppose that we could find a parametrisation by rational functions with rational parameters

$$
(x, y)=\left(\frac{a(t)}{b(t)}, \frac{c(t)}{d(t)}\right)
$$

for the circle $x^{2}+y^{2}=3$. Here $a(t), b(t), c(t)$ and $d(t)$ are polynomials in t. $b(t)$ and $d(t)$ have only finitely many zeroes. Pick a rational number $t=t_{0}$ not one of these zeroes. Then we get a rational point $\left(x_{0}, y_{0}\right)$ on the circle $x^{2}+y^{2}=3$.
Clearing denominators in the usual way we would get an integral solution of $x^{2}+y^{2}-3 z^{2}=0$. By Legendre this would imply -1 is a residue of 3 . But $-1 \equiv 2 \bmod 3$ and this is not a residue of 3 .

