
MODEL ANSWERS TO THE SECOND HOMEWORK

7.3.2. Let

n = N(ρ)

= ρρ̄.

Then n is an integer and ρ divides n. As ρ is a prime it is not a unit
and so n > 1. Let n = p1p2 . . . pk be the prime factorisation of n. As ρ
is a prime, ρ must divide one of the factors of the prime factorisation
of n, so that ρ must divide a prime p = pi.
7.3.3. If 1+i divides a+bi then 2 = N(1+i) divides N(a+bi) = a2+b2.
Thus a ≡ b mod 2.
Now suppose a ≡ b mod 2. If a and b are even then 2 divides a + bi
so that 1 + i divides a+ bi. Suppose that a and b are both odd. Then

a+ bi− (1 + i) = (a− 1) + (b− 1)i.

As a− 1 and b− 1 are both even, (a− 1) + (b− 1)i is divisible by 1 + i,
so that a+ bi divides 1 + i.
7.3.4. If n is square-free and

x2 + y2 = n

then (x, y) = 1. Thus every representation of a sum of squares is
automatically a primitive representation. It follows that p2(n) = r2(n).
If n is square-free then 4 does not divide n. Theorem 7.5 implies that
p2(n) = 0 if and only if there is a prime p ≡ 3 mod 4 dividing n and
Theorem 7.6 implies that r2(n) = 0 under the same conditions.
If there is no prime congruent to 3 modulo 4 dividing n then

τ(n′) = 2s,

so that Theorem 7.3 and Theorem 7.5 imply p2(n) = r2(n).
7.3.6. Define a function

f : N −→ Z
by the rule

f(m) =


0 m is even

1 m ≡ 1 mod 4

−1 m ≡ 3 mod 4.

We check that

f(ab) = f(a)f(b)
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case by case. If a or b is even then so is ab and both sides are zero. If
a and b are both congruent to 1 modulo 4 then so is ab and both sides
are equal to 1. If a ≡ 1 mod 4 and b ≡ 3 mod 4 then ab ≡ 3 mod 4
and both sides are −1. By symmetry we just need to consider the case
when both a and b ≡ 3 mod 4. In this case ab ≡ 1 mod 4 and both
sides are equal to 1.
It follows that

F (n) =
∑
d|n

f(d)

is multiplicative.
Note that

F (n) =
∑
d|n

f(d)

=
∑

d|n,d≡1 mod 4

f(d) +
∑

d|n,d≡3 mod 4

f(d)

=
∑

d|n,d≡1 mod 4

1−
∑

d|n,d≡3 mod 4

1

= τ1(n)− τ3(n).

By (4.6) we just have to show that

δτ(n1) = F (n) where n = 2un1n2,

n1 is a product over primes congruent to 1 modulo 4, n2 is a product
over primes congruent to 3 modulo 4, and

δ =

{
1 if n2 is a square

0 otherwise.

Since both sides of this equation are multiplicative, it suffices to check
what happens when n = pe is a power of a prime.
There are three cases. If p = 2 then n1 = 1, δ = 1 and

F (n) = F (2e)

= 1

= δτ(n1).

If p ≡ 1 mod 4 then n1 = n, δ = 1 and

F (n) = F (pe)

= (1 + e)

= δτ(n1).
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If p ≡ e mod 4 then n1 = 1, δ = 1 unless e is odd and

F (pe) =

{
1 if e is even

0 if e is odd.

7.3.7. Consider the Diophantine equation

x2 + 1 = yn,

where n > 1. We look for solutions with x > 0.
If x is odd then the LHS is even. It follows that the RHS is divisble by
4, as n > 1. But then x2 is congruent to 3 modulo 4, a contradiction.
Now suppose that n = 2m is even. Then

yn − 1 = (ym − 1)(ym + 1).

The only possible common factor of ym− 1 and ym + 1 is 2. As x2 is a
square, it follows that n is not even.
Note that

x2 + 1 = (x+ i)(x− i).
If ρ divides both x + i and x − i then ρ must divide 2i, so that ρ
divides 2. As x is an odd integer it follows that ρ is a unit. Thus
(x+ i, x− i) = 1.
If ρ is a Gaussian prime that divides x+ i then ρ must divide y but it
cannot divide x− i. Suppose that the largest power of ρ which divides
y is ρe. As ρen divides yn it follows that ρen divides x+ i, but no larger
power. It follows that x+ i = (a+ bi)n is an nth power.
As x+ i = (a+bi)n, if we split this equation into its real and imaginary
parts, we get

x = an−
(
n

2

)
an−2b2+

(
n

4

)
an−4b4+. . . and 1 =

(
n

1

)
an−1b−

(
n

3

)
an−3b3+· · ·+.

Note that b divides every term of the RHS of the second expansion. As
the LHS is 1, it follows that b = ±1.
In this case the equations reduce to

1 = an−
(
n

2

)
an−2+

(
n

4

)
an−4+. . . and ±1 = an−1−

(
n

3

)
an−3+. . . .

If n = 3 the second equation reduces to

±1 = 3a2 − 1.

Thus either a = 0 or 3a2 = 2, not possible.
If n = 5 the second equation reduces to

±1 = 5a4 − 10a2 + 1.
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Thus either

a2 = 5 or 5a4 − 10a2 + 2 = 0.

Neither of these equations have integral solutions.
If n = 7 the second equation reduces to

±1 = 7a6 − 35a4 + 21a2 − 1.

Thus either

a4 − 5a2 + 3 = 0 or 7a6 − 35a4 + 21a2 − 2 = 0.

If we view the first equation as a quadratic in a2, then there are no
rational roots, so no rational roots for a either. The second equation
has no integer roots.
7.4.1. An integer is not representable as the sum of three cubes if and
only if it is of the form 4k(8k + 7). The number of integers up to N
which are divisible by 4k is

x
N

4k
y

The number of such integers congruent to 7 modulo 8 is at least

x
xN
4k
y

8
y.

Note that these numbers don’t overlap, since if N = 4km and m is
congruent to 7 modulo 8, then N is not divisible by 4k+1. The number
of integers up to N which are not representable as the sum of three
cubes is then the sum ∑

x
xN
4k
y

8
y.

If we remove the round down we get∑ N

8 · 4k
,

a geometric series. If we sum the geometric series we get

N

8(1− 3/4
=
N

6
.

The error is at most twice the number of terms in the sum, which is at
most

2 log4N.

If we divide this by N then the ratio goes to zero.
7.4.2. If p = 2 then take x = y = 1 and z = 0. Otherwise let z = 1.
We have to solve

x2 + y2 + c ≡ 0 mod p.
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Note that there are (p+ 1)/2 distinct non-zero numbers of the form

ax2 and − bz2 + c,

modulo p, since

ai2 ≡ aj2 mod p implies that i2 ≡ j2 mod p,

and we already saw in lectures that the latter are distinct if 0 ≤ i <
j ≤ (p− 1)/2.
Since

p+ 1

2
+
p+ 1

2
= p+ 1

> p,

unless p = 3, it follows that we can choose ax2 and −by2 + c so that
they coincide for some choice of x and y. Thus we can solve the original
equation.
7.4.3. We show that every integer is of the form

±x2 ± y2 ± z2.

We may assume that n is a natural number. As

2n+ 1 = (n+ 1)2 − n2,

it follows that every odd natural number is the difference of two squares.
If n is even then n+ 1 is odd. If n+ 1 = x2 − y2 then

n = x2 − y2 − 12.

Suppose that

6 = ±x2 ± y2.
At least one term is positive. Possibly switching x and y we have

6 = x2 ± y2.

Consider the equation

x2 + y2 = 6.

x and y are both at most two and it is easy to see there is no solution.
Otherwise we have

x2 − y2 = 6.

As

x2 − y2 = (x− y)(x+ y),

either x − y = 1 and x + y = 6 or x − y = 2 and x + y = 3. In both
cases, neither x nor y are natural numbers.
Thus 6 requires all three terms.
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7.4.4. We check to see that −2 is a residue of p. We have(
−2

p

)
=

(
−1

p

)(
2

p

)
.

If p ≡ 1 mod 8 then p ≡ 1 mod 4 and so −1 is a residue of p. On the
other hand, 2 is also a quadratic residue of p, so that −2 is a residue
of p.
If p ≡ 3 mod 8 then p ≡ 3 mod 4 and so −1 is not a residue of p. On
the other hand, 2 is also not a quadratic residue of p, so that −2 is a
residue of p.
Thus −2 is a residue of p if p ≡ 1 or 3 mod 8. By (7.2.2) it follows
that we may find x and y such that

x2 + 2y2 = p.

But then
x2 + y2 + y2 = p.
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