MODEL ANSWERS TO THE SECOND HOMEWORK

7.3.2. Let

n=N(p)

= pp-

Then n is an integer and p divides n. As p is a prime it is not a unit
and so n > 1. Let n = pyps ... px be the prime factorisation of n. As p
is a prime, p must divide one of the factors of the prime factorisation
of n, so that p must divide a prime p = p;.
7.3.3. If 144 divides a+bi then 2 = N(1+1i) divides N (a+bi) = a*+b*.
Thus a =b mod 2.

Now suppose a = b mod 2. If @ and b are even then 2 divides a + bi
so that 1+ ¢ divides a + bi. Suppose that a and b are both odd. Then

a+bi—(1+i)=(a—1)+(b—1)i.

Asa—1and b—1 are both even, (a — 1)+ (b— 1)i is divisible by 1+ 1,
so that a + b7 divides 1 + 3.
7.3.4. If n is square-free and

C(]2+y2:’l'L

then (z,y) = 1. Thus every representation of a sum of squares is
automatically a primitive representation. It follows that pa(n) = ro(n).
If n is square-free then 4 does not divide n. Theorem 7.5 implies that
p2(n) = 0 if and only if there is a prime p = 3 mod 4 dividing n and
Theorem 7.6 implies that 73(n) = 0 under the same conditions.

If there is no prime congruent to 3 modulo 4 dividing n then

T(n') = 2°,
so that Theorem 7.3 and Theorem 7.5 imply pa(n) = r2(n).
7.3.6. Define a function

fTN—Z
by the rule

0 m is even

fm)=<¢1 m=1 mod4

-1 m=3 mod 4.

We check that

f(ab) = f(a)f(b)
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case by case. If a or b is even then so is ab and both sides are zero. If
a and b are both congruent to 1 modulo 4 then so is ab and both sides
are equal to 1. If a =1 mod 4 and b =3 mod 4 then ab =3 mod 4
and both sides are —1. By symmetry we just need to consider the case
when both @ and b = 3 mod 4. In this case ab =1 mod 4 and both
sides are equal to 1.

It follows that

F(n) =) f(d)

dn
is multiplicative.
Note that
F(n) =Y f(d)
din
= >, f@+ ) f@
d|n,d=1 mod 4 d|n,d=3 mod 4

= > 1= > 1

dnd=l mod4  dlnd=3 mod 4
=T11(n) — 13(n).
By (4.6) we just have to show that
dt(ny) = F(n) where  n = 2"nyn,,

ny is a product over primes congruent to 1 modulo 4, ny is a product
over primes congruent to 3 modulo 4, and

5= 1 if ny is a square
~ 10 otherwise.

Since both sides of this equation are multiplicative, it suffices to check
what happens when n = p© is a power of a prime.
There are three cases. If p =2 then n; =1, § = 1 and

F(n) = F(2°)
=1
= 57’(”1).
If p=1 mod 4 then ny =n, § =1 and
F(n) = F(p%)
=(l+e)
= 57’(”1).
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If p=e mod 4 then n; =1, § = 1 unless e is odd and

1 if eis even
F(p®) =
(r°) {0 if e 1s odd.

7.3.7. Consider the Diophantine equation
24+ 1=qy",
where n > 1. We look for solutions with x > 0.
If z is odd then the LHS is even. It follows that the RHS is divisble by

4, as n > 1. But then 22 is congruent to 3 modulo 4, a contradiction.
Now suppose that n = 2m is even. Then

y'—1= " -1 +1).

The only possible common factor of y™ — 1 and y™ + 11is 2. As 2% is a
square, it follows that n is not even.
Note that

22+ 1= (z+1i)(x —1).
If p divides both =z 4+ ¢ and x — ¢ then p must divide 2i, so that p
divides 2. As z is an odd integer it follows that p is a unit. Thus
(x+i,z—1)=1.
If p is a Gaussian prime that divides = + ¢ then p must divide y but it
cannot divide x — . Suppose that the largest power of p which divides
y is p°. As p® divides y" it follows that p* divides x + ¢, but no larger
power. It follows that = + i = (a + bi)" is an nth power.
As x+1 = (a+bi)", if we split this equation into its real and imaginary
parts, we get

_n__ n n—212 n n—414 — n n—1p Y n—3;3
T=a (2>a b+(4>@ b 4. .. and 1 (1)a b (3)a b°+

Note that b divides every term of the RHS of the second expansion. As
the LHS is 1, it follows that b = £1.
In this case the equations reduce to

1l=a"— (Z) a2+ (Z) a" and +1=q" ' (g) a4

If n = 3 the second equation reduces to
+1=3a* - 1.

Thus either a = 0 or 3a® = 2, not possible.
If n = 5 the second equation reduces to

+1 = 5a* — 10a® + 1.
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Thus either

a>=5 or 5a* — 10a* +2 = 0.
Neither of these equations have integral solutions.
If n = 7 the second equation reduces to

+1 =7a°® — 35a* + 21a® — 1.
Thus either
at—5a>+3=0 or 7a’% — 35a* + 214> — 2 = 0.

If we view the first equation as a quadratic in a?, then there are no
rational roots, so no rational roots for a either. The second equation
has no integer roots.
7.4.1. An integer is not representable as the sum of three cubes if and
only if it is of the form 4*(8k + 7). The number of integers up to N
which are divisible by 4* is
N

I_4—kJ

The number of such integers congruent to 7 modulo 8 is at least

N
I_4—k_|
8

Note that these numbers don’t overlap, since if N = 4*m and m is
congruent to 7 modulo 8, then N is not divisible by 4!, The number
of integers up to N which are not representable as the sum of three
cubes is then the sum
L%_I
ZI_ 8 _I.

If we remove the round down we get

N
2T
a geometric series. If we sum the geometric series we get
N N
8(1-3/4 6

The error is at most twice the number of terms in the sum, which is at
most

[ .

2log, N.

If we divide this by /N then the ratio goes to zero.
7.4.2. If p = 2 then take v = y = 1 and z = 0. Otherwise let z = 1.
We have to solve
2?4+ y*+c=0 mod p.
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Note that there are (p + 1)/2 distinct non-zero numbers of the form

ar? and —bz? +ec,
modulo p, since
ai’ = aj® mod p implies that i* = 5% mod p,

and we already saw in lectures that the latter are distinct if 0 < i <
i<-1)/2
Since

p+1 p+1

(L I L 1

o g T PT
> P,

unless p = 3, it follows that we can choose az? and —by? + ¢ so that
they coincide for some choice of z and y. Thus we can solve the original
equation.

7.4.3. We show that every integer is of the form

+2? +% + 22
We may assume that n is a natural number. As
2n+1=(n+1)*—n?

it follows that every odd natural number is the difference of two squares.
If n is even then n + 1 is odd. If n 4+ 1 = 22 — ¢? then

n=az%—1y*—1°%
Suppose that
6 = a2 + 42
At least one term is positive. Possibly switching x and y we have
6 = 2% + >
Consider the equation
2% + 3 = 6.

x and y are both at most two and it is easy to see there is no solution.
Otherwise we have
z? —y? = 6.
As
2 2 _
=y =(z—y)(z+y),
eitherx —y=1landz+y=6orx—y =2and z+y = 3. In both

cases, neither x nor y are natural numbers.

Thus 6 requires all three terms.
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7.4.4. We check to see that —2 is a residue of p. We have

5)-G)6)

p p/)\p)

If p=1 mod 8 then p=1 mod 4 and so —1 is a residue of p. On the
other hand, 2 is also a quadratic residue of p, so that —2 is a residue
of p.

If p=3 mod 8 then p =3 mod 4 and so —1 is not a residue of p. On
the other hand, 2 is also not a quadratic residue of p, so that —2 is a
residue of p.

Thus —2 is a residue of p if p = 1 or 3 mod 8. By (7.2.2) it follows
that we may find  and y such that

2 + 2% = p.

But then
e y2 4 y2 = p.



