MODEL ANSWERS TO THE SECOND HOMEWORK

7.3.2. Let

$$
\begin{aligned}
n & =N(\rho) \\
& =\rho \bar{\rho} .
\end{aligned}
$$

Then n is an integer and ρ divides n. As ρ is a prime it is not a unit and so $n>1$. Let $n=p_{1} p_{2} \ldots p_{k}$ be the prime factorisation of n. As ρ is a prime, ρ must divide one of the factors of the prime factorisation of n, so that ρ must divide a prime $p=p_{i}$.
7.3.3. If $1+i$ divides $a+b i$ then $2=N(1+i)$ divides $N(a+b i)=a^{2}+b^{2}$. Thus $a \equiv b \bmod 2$.
Now suppose $a \equiv b \bmod 2$. If a and b are even then 2 divides $a+b i$ so that $1+i$ divides $a+b i$. Suppose that a and b are both odd. Then

$$
a+b i-(1+i)=(a-1)+(b-1) i .
$$

As $a-1$ and $b-1$ are both even, $(a-1)+(b-1) i$ is divisible by $1+i$, so that $a+b i$ divides $1+i$.
7.3.4. If n is square-free and

$$
x^{2}+y^{2}=n
$$

then $(x, y)=1$. Thus every representation of a sum of squares is automatically a primitive representation. It follows that $p_{2}(n)=r_{2}(n)$. If n is square-free then 4 does not divide n. Theorem 7.5 implies that $p_{2}(n)=0$ if and only if there is a prime $p \equiv 3 \bmod 4$ dividing n and Theorem 7.6 implies that $r_{2}(n)=0$ under the same conditions. If there is no prime congruent to 3 modulo 4 dividing n then

$$
\tau\left(n^{\prime}\right)=2^{s},
$$

so that Theorem 7.3 and Theorem 7.5 imply $p_{2}(n)=r_{2}(n)$.
7.3.6. Define a function

$$
f: \mathbb{N} \longrightarrow \mathbb{Z}
$$

by the rule

$$
f(m)=\left\{\begin{array}{lll}
0 & m \text { is even } \\
1 & m \equiv 1 \quad \bmod 4 \\
-1 & m \equiv 3 & \bmod 4
\end{array}\right.
$$

We check that

$$
f(a b)=\underset{1}{f}(a) f(b)
$$

case by case. If a or b is even then so is $a b$ and both sides are zero. If a and b are both congruent to 1 modulo 4 then so is $a b$ and both sides are equal to 1 . If $a \equiv 1 \bmod 4$ and $b \equiv 3 \bmod 4$ then $a b \equiv 3 \bmod 4$ and both sides are -1 . By symmetry we just need to consider the case when both a and $b \equiv 3 \bmod 4$. In this case $a b \equiv 1 \bmod 4$ and both sides are equal to 1 .
It follows that

$$
F(n)=\sum_{d \mid n} f(d)
$$

is multiplicative.
Note that

$$
\begin{aligned}
F(n) & =\sum_{d \mid n} f(d) \\
& =\sum_{d \mid n, d \equiv 1} \bmod 4 \\
& =\sum_{d \mid n, d \equiv 1 \bmod 4} 1-\sum_{d \mid n, d \equiv 3 \bmod 4} f(d) \\
& =\tau_{1}(n)-\tau_{3}(n) .
\end{aligned}
$$

By (4.6) we just have to show that

$$
\delta \tau\left(n_{1}\right)=F(n) \quad \text { where } \quad n=2^{u} n_{1} n_{2}
$$

n_{1} is a product over primes congruent to 1 modulo $4, n_{2}$ is a product over primes congruent to 3 modulo 4 , and

$$
\delta= \begin{cases}1 & \text { if } n_{2} \text { is a square } \\ 0 & \text { otherwise }\end{cases}
$$

Since both sides of this equation are multiplicative, it suffices to check what happens when $n=p^{e}$ is a power of a prime.
There are three cases. If $p=2$ then $n_{1}=1, \delta=1$ and

$$
\begin{aligned}
F(n) & =F\left(2^{e}\right) \\
& =1 \\
& =\delta \tau\left(n_{1}\right) .
\end{aligned}
$$

If $p \equiv 1 \bmod 4$ then $n_{1}=n, \delta=1$ and

$$
\begin{aligned}
F(n) & =F\left(p^{e}\right) \\
& =(1+e) \\
& =\delta \tau\left(n_{1}\right) .
\end{aligned}
$$

If $p \equiv e \bmod 4$ then $n_{1}=1, \delta=1$ unless e is odd and

$$
F\left(p^{e}\right)= \begin{cases}1 & \text { if } e \text { is even } \\ 0 & \text { if } e \text { is odd }\end{cases}
$$

7.3.7. Consider the Diophantine equation

$$
x^{2}+1=y^{n},
$$

where $n>1$. We look for solutions with $x>0$.
If x is odd then the LHS is even. It follows that the RHS is divisble by 4 , as $n>1$. But then x^{2} is congruent to 3 modulo 4 , a contradiction.
Now suppose that $n=2 m$ is even. Then

$$
y^{n}-1=\left(y^{m}-1\right)\left(y^{m}+1\right) .
$$

The only possible common factor of $y^{m}-1$ and $y^{m}+1$ is 2 . As x^{2} is a square, it follows that n is not even.
Note that

$$
x^{2}+1=(x+i)(x-i)
$$

If ρ divides both $x+i$ and $x-i$ then ρ must divide $2 i$, so that ρ divides 2. As x is an odd integer it follows that ρ is a unit. Thus $(x+i, x-i)=1$.
If ρ is a Gaussian prime that divides $x+i$ then ρ must divide y but it cannot divide $x-i$. Suppose that the largest power of ρ which divides y is ρ^{e}. As $\rho^{e n}$ divides y^{n} it follows that $\rho^{e n}$ divides $x+i$, but no larger power. It follows that $x+i=(a+b i)^{n}$ is an nth power.
As $x+i=(a+b i)^{n}$, if we split this equation into its real and imaginary parts, we get
$x=a^{n}-\binom{n}{2} a^{n-2} b^{2}+\binom{n}{4} a^{n-4} b^{4}+\ldots \quad$ and $\quad 1=\binom{n}{1} a^{n-1} b-\binom{n}{3} a^{n-3} b^{3}+\cdots+$.
Note that b divides every term of the RHS of the second expansion. As the LHS is 1 , it follows that $b= \pm 1$.
In this case the equations reduce to

$$
1=a^{n}-\binom{n}{2} a^{n-2}+\binom{n}{4} a^{n-4}+\ldots \quad \text { and } \quad \pm 1=a^{n-1}-\binom{n}{3} a^{n-3}+\ldots
$$

If $n=3$ the second equation reduces to

$$
\pm 1=3 a^{2}-1
$$

Thus either $a=0$ or $3 a^{2}=2$, not possible.
If $n=5$ the second equation reduces to

$$
\pm 1=5 a^{4}-10 a^{2}+1
$$

Thus either

$$
a^{2}=5 \quad \text { or } \quad 5 a^{4}-10 a^{2}+2=0
$$

Neither of these equations have integral solutions.
If $n=7$ the second equation reduces to

$$
\pm 1=7 a^{6}-35 a^{4}+21 a^{2}-1
$$

Thus either

$$
a^{4}-5 a^{2}+3=0 \quad \text { or } \quad 7 a^{6}-35 a^{4}+21 a^{2}-2=0
$$

If we view the first equation as a quadratic in a^{2}, then there are no rational roots, so no rational roots for a either. The second equation has no integer roots.
7.4.1. An integer is not representable as the sum of three cubes if and only if it is of the form $4^{k}(8 k+7)$. The number of integers up to N which are divisible by 4^{k} is

$$
\left\llcorner\frac{N}{4^{k}}\right\lrcorner
$$

The number of such integers congruent to 7 modulo 8 is at least

$$
\left\llcorner\frac{\left\llcorner\frac{N}{4^{k}}\right.}{8}\right\lrcorner .
$$

Note that these numbers don't overlap, since if $N=4^{k} m$ and m is congruent to 7 modulo 8 , then N is not divisible by 4^{k+1}. The number of integers up to N which are not representable as the sum of three cubes is then the sum

$$
\sum\left\llcorner\frac{\left\llcorner\frac{N}{4^{k}}\right\lrcorner}{8}\right\lrcorner
$$

If we remove the round down we get

$$
\sum \frac{N}{8 \cdot 4^{k}}
$$

a geometric series. If we sum the geometric series we get

$$
\frac{N}{8(1-3 / 4}=\frac{N}{6} .
$$

The error is at most twice the number of terms in the sum, which is at most

$$
2 \log _{4} N
$$

If we divide this by N then the ratio goes to zero.
7.4.2. If $p=2$ then take $x=y=1$ and $z=0$. Otherwise let $z=1$.

We have to solve

$$
x^{2}+y^{2}+c \equiv 0 \quad \bmod p .
$$

Note that there are $(p+1) / 2$ distinct non-zero numbers of the form

$$
a x^{2} \quad \text { and } \quad-b z^{2}+c,
$$

modulo p, since

$$
a i^{2} \equiv a j^{2} \quad \bmod p \quad \text { implies that } \quad i^{2} \equiv j^{2} \quad \bmod p,
$$

and we already saw in lectures that the latter are distinct if $0 \leq i<$ $j \leq(p-1) / 2$.
Since

$$
\begin{aligned}
\frac{p+1}{2}+\frac{p+1}{2} & =p+1 \\
& >p,
\end{aligned}
$$

unless $p=3$, it follows that we can choose $a x^{2}$ and $-b y^{2}+c$ so that they coincide for some choice of x and y. Thus we can solve the original equation.
7.4.3. We show that every integer is of the form

$$
\pm x^{2} \pm y^{2} \pm z^{2}
$$

We may assume that n is a natural number. As

$$
2 n+1=(n+1)^{2}-n^{2}
$$

it follows that every odd natural number is the difference of two squares. If n is even then $n+1$ is odd. If $n+1=x^{2}-y^{2}$ then

$$
n=x^{2}-y^{2}-1^{2} .
$$

Suppose that

$$
6= \pm x^{2} \pm y^{2}
$$

At least one term is positive. Possibly switching x and y we have

$$
6=x^{2} \pm y^{2}
$$

Consider the equation

$$
x^{2}+y^{2}=6 .
$$

x and y are both at most two and it is easy to see there is no solution.
Otherwise we have

$$
x^{2}-y^{2}=6 \text {. }
$$

As

$$
x^{2}-y^{2}=(x-y)(x+y),
$$

either $x-y=1$ and $x+y=6$ or $x-y=2$ and $x+y=3$. In both cases, neither x nor y are natural numbers.
Thus 6 requires all three terms.
7.4.4. We check to see that -2 is a residue of p. We have

$$
\left(\frac{-2}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right) .
$$

If $p \equiv 1 \bmod 8$ then $p \equiv 1 \bmod 4$ and so -1 is a residue of p. On the other hand, 2 is also a quadratic residue of p, so that -2 is a residue of p.
If $p \equiv 3 \bmod 8$ then $p \equiv 3 \bmod 4$ and so -1 is not a residue of p. On the other hand, 2 is also not a quadratic residue of p, so that -2 is a residue of p.
Thus -2 is a residue of p if $p \equiv 1$ or $3 \bmod 8$. By (7.2.2) it follows that we may find x and y such that

$$
x^{2}+2 y^{2}=p
$$

But then

$$
x^{2}+y^{2}+y^{2}=p .
$$

