
MODEL ANSWERS TO THE FIRST HOMEWORK

7.1.1. By assumption r is a quadratic residue of p. Let s be the inverse
of r modulo p. It follows that s is also a quadratic residue of p. Pick
a such that a2 ≡ s mod p. Apply (1.2) to a and λ = g. Then we may
find u and v such that

au ≡ v mod p

where 0 < u < g and 0 < |v| ≤ p/g. As v is an integer it follows that
0 < |v| ≤ h. Squaring both sides gives

su2 ≡ v2 mod p.

Multiplying both sides by r gives

s2 ≡ rv2 mod p.

7.1.2. Suppose that we consider integers x1, x2, . . . , xs such that |xj| ≤
H. If

yi =
∑
j

aijxj

then

|yi| =

∣∣∣∣∣∑
j

aijxj

∣∣∣∣∣
≤
∑
j

|aijxj|

=
∑
j

|aij||xj|

≤
∑
j

AH

= sAH.

The number of choices of s-stuples (x1, x2, . . . , xs) is then (2H+1)s and
the number of possible r-tuples (y1, y2, . . . , yr) is as most (2sAH + 1)r.
If

(2sAH + 1)r < (2H + 1)s,

then by the pigeonhole principle we must have two different s-tuples
(x1, x2, . . . , xs) and (w1, w2, . . . , ws) which give rise to the same r-tuple
(y1, y2, . . . , yr).
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The difference (u1 = x1 − w1, u2 = x2 − w2, . . . , ur = xr − wr) is then
a solution to the system of linear homogeneous equations.
If

2H + 1 ≥ (sA)r/(s−r)

then

(2sAH + 1)r < (sA(2H + 1))r

= (sA)r(2H + 1)r

= (sA)r(2H + 1)r−s(2H + 1)s

< (2H + 1)s.

7.2.2. (a) Pick u such that u2 ≡ −1 mod p. By (1.2) we may find r
and s such that

us ≡ r mod p

where 0 < s <
√
p and |r| ≤ √p. If r > 0 then put x = s and y = r.

If r < 0 then put x = −r and y = s. As u(−r) ≡ s mod p, either way
we have ux ≡ y mod p, 0 < x <

√
p and 0 < y <

√
p.

Note that x2 + y2 ≡ 0 mod p. As

0 < x2 + y2

= tp

< 2p2.

It follows that x2 + y2 = p.
(b) If p = 2 then take x = 0 and y = 1. Otherwise, pick u such that
u2 ≡ −2 mod p. By (1.2) we may find r and s such that

us ≡ r mod p

where 0 < s <
√
p and |r| ≤ √p. If r > 0 then let λ = s and µ = r.

If r < 0 then let λ = −s and µ = r. As u(−r) ≡ 2s mod p, dividing
through by 2, it follows that λ2 + 2µ2 ≡ 0 mod p, 0 < λ <

√
p and

0 < µ <
√
p. As

0 < λ2 + 2µ2

= tp

< 3p2.

It follows that either λ2 + 2µ2 = p or λ2 + 2µ2 = 2p. In the former case
put x = λ and y = µ. In the latter case, λ = 2y must be even. Let
x = µ. Dividing through by 2 we get 2y2 + x2 = p. Either way, we can
find x and y such that x2 + 2y2 = p.

2



(c) Presumably one should assume that p > 2. If p = 3 then take x = 0
and y = 1. Otherwise, pick u such that u2 ≡ −3 mod p. By (1.2) we
may find r and s such that

us ≡ r mod p

where 0 < s <
√
p and |r| ≤ √p. We may assume that r and s are

coprime. If r > 0 then let λ = s and µ = r. If r < 0 then let λ = −s
and µ = r. As u(−r) ≡ 3s mod p, dividing through by 3, it follows
that λ2 + 3µ2 ≡ 0 mod p, 0 < λ <

√
p and 0 < µ <

√
p. As

0 < λ2 + 3µ2

= tp

< 4p2.

It follows that either λ2 + 3µ2 = p or λ2 + 3µ2 = 2p or λ2 + 3µ2 = 3p.
In the second case if one of λ or µ is even then so is the other, a con-
tradiction. Thus we may assume that λ and µ are both odd. Reducing
modulo 4 and as p is odd, we get

1 + 3 ≡ 2 mod 4,

a contradiction. Thus the second case does not occur.
In the first case put x = λ and y = µ. In the third case, λ = 3y must be
divisible by 3. Let x = µ. Dividing through by 3 we get 3y2 + x2 = p.
Either way, we can find x and y such that x2 + 3y2 = p.
(d) −5 is a residue of 7. Indeed, 32 = 9 ≡ −5 mod 7. But x2 + 5y2 is
never equal to 7. Indeed, y ≤ 1. If y = 0 we want x2 = 7, impossible.
If y = 1 we want x2 = 2 also impossible.
More generally, consider primes q congruent to 1 modulo 4. Pick an
integer a such that a is not a quadratic residue of q. Let p > q be
a prime congruent to 3 modulo 4 and to a modulo q (infinitely many
primes p and q exist by Dirichlet’s theorem). As q is congruent to one
modulo 4, by quadratic reciprocity we have(

−q
p

)
=

(
−1

p

)(
q

p

)
= −1

(
p

q

)
= −1

(
a

q

)
= 1.

Thus −q is a residue of p.
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However, if x2 + qy2 = p then consider reducing modulo 4. We get

x2 + y2 ≡ 3 mod 4,

impossible.
(e) Let α = a+ b

√
2i and β = c+ d

√
2i. Let

N(α) = a2 + 2b2.

Note that

N(α) = αᾱ.

We have

N(αβ) = (αβ)αβ

= ααββ

= N(α)N(β).

Similar calculations pertain, replacing
√

2 by
√

3.
Thus the set of numbers which are of the form x2 + 2y2, or x2 + 3y2,
are closed under multiplication.
Thus every natural number n such that every −2 is a residue of every
prime p dividing is of the form x2+2y2. Similarly every natural natural
number n such that every −3 is a residue of every odd prime p dividing
and which is divisible by a power of 4, is of the form x2 + 3y2.
7.2.3. As N is odd we may assume that a and c are odd and b and d
are even. Let

u = (a− c, d− b) and v = (a+ c, b+ d).

Then

a− c = lu and d− b = mu,

for coprime integers l and m. Note that as

a2 + b2 = c2 + d2 it follows that a2 − c2 = b2 − d2.
Factoring both sides, we get

(a− c)(a+ c) = (b− d)(b+ d).

It follows that

l(a+ c) = m(b+ d).

As l and m are coprime it follows that

(a+ c) = mα and b+ d = lβ.

Cancelling we see that α = β is the greatest common divisor v. Thus

(a+ c) = mv and b+ d = lv.
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Note that u and v are even. We have[(u
2

)2
+
(v

2

)2]
(m2 + l2) =

(
mu

2
+
lv

2

)2

+

(
lu

2
− mv

2

)2

=

(
d− b

2
+
b+ d

2

)2

+

(
a− c

2
− a+ c

2

)2

= d2 + c2

= N.

7.2.4. It is expedient to find another way to write 1, 000, 009 as a sum
of squares. This is easy,

1, 000, 009 = 32 + (1, 000)2.

In this case,

a = 235 b = 972 c = 3 and d = 1, 000.

Therefore

u = (232, 28)

= 2(116, 14)

= 4(58, 7)

= 4.

and

v = (238, 1972)

= 2(119, 986)

= 2 · 17(7, 58))

= 34.

We have

232 = 4 · l
so that l = 58 and

28 = 4m

so that m = 7. Thus

1, 000, 009 = (22 + 172)(72 + 582)

= 293 · 3413.

7.3.1. Suppose that p ∈ Z is a prime. If p = a2 + b2 then p =
(a+ bi)(a− bi). As

N(a+ bi) = a2 + b2 = p,
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a prime integer it follows that a+bi is a prime in the Gaussian integers.
The associates of a + bi are a + bi, −b + ai, −a − bi and b − ai. The
associates of a − bi are the conjugates of these. All eight complex
numbers give the same way to write p as a sum of squares.
As Z[i] is a UFD, there is then only one way to write p as a sum of
squares.
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