MODEL ANSWERS TO THE FIRST HOMEWORK

7.1.1. By assumption r is a quadratic residue of p. Let s be the inverse
of » modulo p. It follows that s is also a quadratic residue of p. Pick
a such that a® = s mod p. Apply (1.2) to @ and A = g. Then we may
find v and v such that

au=v mod p

where 0 < u < g and 0 < |v| < p/g. As v is an integer it follows that
0 < |v| < h. Squaring both sides gives

su? =0v? mod p.
Multiplying both sides by r gives

s> =rv® mod p.
7.1.2. Suppose that we consider integers x1, x, ..., x5 such that |z;| <
H.1If

Yi = Z QAijTj
J

then

|yi| =

j
< agag]
j
= Z |aij ||
j

§ZAH
J

=sAH.

The number of choices of s-stuples (z1, z, ..., xy) is then (2H +1)* and
the number of possible r-tuples (y1, 4o, ..., ¥,) is as most (2sAH + 1)".
If

(2sAH +1)" < (2H + 1)°,

then by the pigeonhole principle we must have two different s-tuples
(1,22, ...,xs) and (wq, ws, ..., w,) which give rise to the same r-tuple

(yhyQa s 7%)'
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The difference (u; = x; — wy,us = T9 — Wo, ..., U, = x, — w,) is then
a solution to the system of linear homogeneous equations.
If

2H + 1> (sA)/¢=)

then
(2sAH +1)" < (sA(2H + 1))"
= (sA)"(2H +1)"
= (sA)"(2H +1)"°(2H + 1)°
< (2H +1)°.
7.2.2. (a) Pick u such that u> = —1 mod p. By (1.2) we may find r

and s such that

us =r mod p
where 0 < s < /p and |r| < \/p. If r > 0 then put = s and y = 7.
If » <0 then put z = —r and y = s. As u(—r) = s mod p, either way

we have uz =y mod p, 0 <z < ,/pand 0 <y < ./p.
Note that 22 + 3> =0 mod p. As

0<a2+9°
< 2p%
It follows that 2% + % = p.

(b) If p = 2 then take x = 0 and y = 1. Otherwise, pick u such that
u? = —2 mod p. By (1.2) we may find r and s such that

us =r mod p

where 0 < s < y/p and |r| < \/p. If 7 > 0 then let A = s and p = 7.
If r <0 thenlet A = —s and u =r. As u(—r) = 2s mod p, dividing
through by 2, it follows that A* +2u* = 0 mod p, 0 < A < /p and

0<p<,p As
0 < A2+ 247
< 3p>.
It follows that either A2 +2u% = p or A2 4242 = 2p. In the former case
put x = A and y = u. In the latter case, A = 2y must be even. Let
x = p. Dividing through by 2 we get 2y? + 2% = p. Either way, we can

find z and y such that 2% + 2y? = p.
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(c) Presumably one should assume that p > 2. If p = 3 then take x = 0
and y = 1. Otherwise, pick u such that u?> = —3 mod p. By (1.2) we
may find r and s such that

us =r mod p

where 0 < s < /p and |r| < \/p. We may assume that r and s are
coprime. If r > 0 then let A = s and y=1r. If r <0 then let A = —s
and p = r. As u(—r) = 3s mod p, dividing through by 3, it follows
that A> +3u*> =0 mod p, 0 <A< pand 0 < pu<,/p. As

0 < A% 4 32
< 4p*

It follows that either A2 + 32 = p or A% + 3u? = 2p or A% + 32 = 3p.
In the second case if one of A or yu is even then so is the other, a con-
tradiction. Thus we may assume that A and p are both odd. Reducing
modulo 4 and as p is odd, we get

1+3=2 mod 4,

a contradiction. Thus the second case does not occur.

In the first case put x = A and y = p. In the third case, A = 3y must be
divisible by 3. Let # = p. Dividing through by 3 we get 3y + 22 = p.
Either way, we can find « and y such that z2 + 3y? = p.

(d) —5 is a residue of 7. Indeed, 32 =9 = —5 mod 7. But 2% + 53 is
never equal to 7. Indeed, y < 1. If y = 0 we want 2% = 7, impossible.
If y = 1 we want 22 = 2 also impossible.

More generally, consider primes ¢ congruent to 1 modulo 4. Pick an
integer a such that a is not a quadratic residue of q. Let p > ¢ be
a prime congruent to 3 modulo 4 and to a modulo ¢ (infinitely many
primes p and ¢ exist by Dirichlet’s theorem). As ¢ is congruent to one
modulo 4, by quadratic reciprocity we have

(7)-(G)C)

Thus —q is a residue of p.



However, if 22 4+ qy? = p then consider reducing modulo 4. We get
22+ y*=3 mod 4,

impossible.
(e) Let a = a+ bv/2i and S = ¢ + dv/2i. Let

N(a) = a® 4 2b*.

Note that
N(a) = aa.
We have
N(af) = (aB)ap
= aafp
= N(a)N(B).

Similar calculations pertain, replacing v/2 by /3.

Thus the set of numbers which are of the form x? + 2y2, or 2 + 32,
are closed under multiplication.

Thus every natural number n such that every —2 is a residue of every
prime p dividing is of the form 22 +2y?. Similarly every natural natural
number n such that every —3 is a residue of every odd prime p dividing
and which is divisible by a power of 4, is of the form z? + 3.

7.2.3. As N is odd we may assume that a and ¢ are odd and b and d
are even. Let

u=(a—c,d—0) and v=(a+cb+d).

Then

a—c=lu and d — b= mu,
for coprime integers [ and m. Note that as

A+ =2+ d it follows that - =0 —d.
Factoring both sides, we get
(a—c)(a+c)=(b—d)(b+d).
It follows that
l(a+c)=m(b+d).

As [ and m are coprime it follows that

(a+c) =ma and b+d=15.
Cancelling we see that a = (8 is the greatest common divisor v. Thus

(a+c)=muv and b+ d=lv.
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Note that u and v are even. We have
G+ (o= (545) + (5-5)
2 2 2 2 2 2
_ (U+M>2+ (a—c_ a—l—c)2
2 2 2 2

=d* + ¢

7.2.4. It is expedient to find another way to write 1,000,009 as a sum
of squares. This is easy,

1,000,009 = 3* + (1,000)>.

In this case,

a =235 b=972 c=3 and d = 1,000.
Therefore

u = (232,28)

2(116, 14)
4(58,7)
4

and
v = (238,1972)
= 2(119, 986)
=2-17(7,58))
= 34.
We have
232 =14-1
so that [ = 58 and
28 = 4m
so that m = 7. Thus
1,000,009 = (2% + 17%)(7* + 58?)
= 293 - 3413.
7.3.1. Suppose that p € Z is a prime. If p = a® + b? then p =
(a+bi)(a—bi). As

N(a + bi) = a* + b* = p,
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a prime integer it follows that a+bi is a prime in the Gaussian integers.
The associates of a + bi are a + bi, —b + ai, —a — bt and b — ai. The
associates of a — bi are the conjugates of these. All eight complex
numbers give the same way to write p as a sum of squares.

As Z][i] is a UFD, there is then only one way to write p as a sum of
squares.



