MODEL ANSWERS TO THE FIRST HOMEWORK

7.1.1. By assumption r is a quadratic residue of p. Let s be the inverse of r modulo p. It follows that s is also a quadratic residue of p. Pick a such that $a^2 \equiv s \mod p$. Apply (1.2) to a and $\lambda = g$. Then we may find u and v such that

$$au \equiv v \mod p$$

where 0 < u < g and $0 < |v| \le p/g$. As v is an integer it follows that $0 < |v| \le h$. Squaring both sides gives

$$su^2 \equiv v^2 \mod p$$
.

Multiplying both sides by r gives

$$s^2 \equiv rv^2 \mod p$$
.

7.1.2. Suppose that we consider integers x_1, x_2, \ldots, x_s such that $|x_j| \leq H$. If

$$y_i = \sum_j a_{ij} x_j$$

then

$$|y_i| = \left| \sum_{j} a_{ij} x_j \right|$$

$$\leq \sum_{j} |a_{ij} x_j|$$

$$= \sum_{j} |a_{ij}| |x_j|$$

$$\leq \sum_{j} AH$$

$$= sAH.$$

The number of choices of s-stuples (x_1, x_2, \ldots, x_s) is then $(2H+1)^s$ and the number of possible r-tuples (y_1, y_2, \ldots, y_r) is as most $(2sAH+1)^r$. If

$$(2sAH + 1)^r < (2H + 1)^s,$$

then by the pigeonhole principle we must have two different s-tuples (x_1, x_2, \ldots, x_s) and (w_1, w_2, \ldots, w_s) which give rise to the same r-tuple (y_1, y_2, \ldots, y_r) .

The difference $(u_1 = x_1 - w_1, u_2 = x_2 - w_2, \dots, u_r = x_r - w_r)$ is then a solution to the system of linear homogeneous equations. If

$$2H + 1 \ge (sA)^{r/(s-r)}$$

then

$$(2sAH + 1)^{r} < (sA(2H + 1))^{r}$$

$$= (sA)^{r}(2H + 1)^{r}$$

$$= (sA)^{r}(2H + 1)^{r-s}(2H + 1)^{s}$$

$$< (2H + 1)^{s}.$$

7.2.2. (a) Pick u such that $u^2 \equiv -1 \mod p$. By (1.2) we may find r and s such that

$$us \equiv r \mod p$$

where $0 < s < \sqrt{p}$ and $|r| \le \sqrt{p}$. If r > 0 then put x = s and y = r. If r < 0 then put x = -r and y = s. As $u(-r) \equiv s \mod p$, either way we have $ux \equiv y \mod p$, $0 < x < \sqrt{p}$ and $0 < y < \sqrt{p}$. Note that $x^2 + y^2 \equiv 0 \mod p$. As

$$0 < x^2 + y^2$$
$$= tp$$
$$< 2p^2.$$

It follows that $x^2 + y^2 = p$.

(b) If p = 2 then take x = 0 and y = 1. Otherwise, pick u such that $u^2 \equiv -2 \mod p$. By (1.2) we may find r and s such that

$$us \equiv r \mod p$$

where $0 < s < \sqrt{p}$ and $|r| \le \sqrt{p}$. If r > 0 then let $\lambda = s$ and $\mu = r$. If r < 0 then let $\lambda = -s$ and $\mu = r$. As $u(-r) \equiv 2s \mod p$, dividing through by 2, it follows that $\lambda^2 + 2\mu^2 \equiv 0 \mod p$, $0 < \lambda < \sqrt{p}$ and $0 < \mu < \sqrt{p}$. As

$$0 < \lambda^2 + 2\mu^2$$
$$= tp$$
$$< 3p^2.$$

It follows that either $\lambda^2 + 2\mu^2 = p$ or $\lambda^2 + 2\mu^2 = 2p$. In the former case put $x = \lambda$ and $y = \mu$. In the latter case, $\lambda = 2y$ must be even. Let $x = \mu$. Dividing through by 2 we get $2y^2 + x^2 = p$. Either way, we can find x and y such that $x^2 + 2y^2 = p$.

(c) Presumably one should assume that p > 2. If p = 3 then take x = 0 and y = 1. Otherwise, pick u such that $u^2 \equiv -3 \mod p$. By (1.2) we may find r and s such that

$$us \equiv r \mod p$$

where $0 < s < \sqrt{p}$ and $|r| \le \sqrt{p}$. We may assume that r and s are coprime. If r > 0 then let $\lambda = s$ and $\mu = r$. If r < 0 then let $\lambda = -s$ and $\mu = r$. As $u(-r) \equiv 3s \mod p$, dividing through by 3, it follows that $\lambda^2 + 3\mu^2 \equiv 0 \mod p$, $0 < \lambda < \sqrt{p}$ and $0 < \mu < \sqrt{p}$. As

$$0 < \lambda^2 + 3\mu^2$$
$$= tp$$
$$< 4p^2.$$

It follows that either $\lambda^2 + 3\mu^2 = p$ or $\lambda^2 + 3\mu^2 = 2p$ or $\lambda^2 + 3\mu^2 = 3p$. In the second case if one of λ or μ is even then so is the other, a contradiction. Thus we may assume that λ and μ are both odd. Reducing modulo 4 and as p is odd, we get

$$1+3 \equiv 2 \mod 4$$
,

a contradiction. Thus the second case does not occur.

In the first case put $x = \lambda$ and $y = \mu$. In the third case, $\lambda = 3y$ must be divisible by 3. Let $x = \mu$. Dividing through by 3 we get $3y^2 + x^2 = p$. Either way, we can find x and y such that $x^2 + 3y^2 = p$.

(d) -5 is a residue of 7. Indeed, $3^2 = 9 \equiv -5 \mod 7$. But $x^2 + 5y^2$ is never equal to 7. Indeed, $y \le 1$. If y = 0 we want $x^2 = 7$, impossible. If y = 1 we want $x^2 = 2$ also impossible.

More generally, consider primes q congruent to 1 modulo 4. Pick an integer a such that a is not a quadratic residue of q. Let p > q be a prime congruent to 3 modulo 4 and to a modulo q (infinitely many primes p and q exist by Dirichlet's theorem). As q is congruent to one modulo 4, by quadratic reciprocity we have

$$\left(\frac{-q}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{q}{p}\right)$$
$$= -1 \left(\frac{p}{q}\right)$$
$$= -1 \left(\frac{a}{q}\right)$$
$$= 1.$$

Thus -q is a residue of p.

However, if $x^2 + qy^2 = p$ then consider reducing modulo 4. We get

$$x^2 + y^2 \equiv 3 \mod 4,$$

impossible.

(e) Let
$$\alpha = a + b\sqrt{2}i$$
 and $\beta = c + d\sqrt{2}i$. Let

$$N(\alpha) = a^2 + 2b^2.$$

Note that

$$N(\alpha) = \alpha \bar{\alpha}.$$

We have

$$N(\alpha\beta) = (\alpha\beta)\overline{\alpha\beta}$$
$$= \alpha\overline{\alpha}\beta\overline{\beta}$$
$$= N(\alpha)N(\beta).$$

Similar calculations pertain, replacing $\sqrt{2}$ by $\sqrt{3}$.

Thus the set of numbers which are of the form $x^2 + 2y^2$, or $x^2 + 3y^2$, are closed under multiplication.

Thus every natural number n such that every -2 is a residue of every prime p dividing is of the form x^2+2y^2 . Similarly every natural natural number n such that every -3 is a residue of every odd prime p dividing and which is divisible by a power of 4, is of the form x^2+3y^2 .

7.2.3. As N is odd we may assume that a and c are odd and b and d are even. Let

$$u = (a - c, d - b)$$
 and $v = (a + c, b + d)$.

Then

$$a-c=lu$$
 and $d-b=mu$,

for coprime integers l and m. Note that as

$$a^{2} + b^{2} = c^{2} + d^{2}$$
 it follows that $a^{2} - c^{2} = b^{2} - d^{2}$.

Factoring both sides, we get

$$(a-c)(a+c) = (b-d)(b+d).$$

It follows that

$$l(a+c) = m(b+d).$$

As l and m are coprime it follows that

$$(a+c) = m\alpha$$
 and $b+d = l\beta$.

Cancelling we see that $\alpha = \beta$ is the greatest common divisor v. Thus

$$(a+c) = mv$$
 and $b+d = lv$.

Note that u and v are even. We have

$$\left[\left(\frac{u}{2} \right)^2 + \left(\frac{v}{2} \right)^2 \right] (m^2 + l^2) = \left(\frac{mu}{2} + \frac{lv}{2} \right)^2 + \left(\frac{lu}{2} - \frac{mv}{2} \right)^2
= \left(\frac{d-b}{2} + \frac{b+d}{2} \right)^2 + \left(\frac{a-c}{2} - \frac{a+c}{2} \right)^2
= d^2 + c^2
= N.$$

7.2.4. It is expedient to find another way to write 1,000,009 as a sum of squares. This is easy,

$$1,000,009 = 3^2 + (1,000)^2.$$

In this case,

$$a = 235$$
 $b = 972$ $c = 3$ and $d = 1,000$.

Therefore

$$u = (232, 28)$$

$$= 2(116, 14)$$

$$= 4(58, 7)$$

$$= 4.$$

and

$$v = (238, 1972)$$

$$= 2(119, 986)$$

$$= 2 \cdot 17(7, 58))$$

$$= 34.$$

We have

$$232 = 4 \cdot l$$

so that l = 58 and

$$28 = 4m$$

so that m=7. Thus

$$1,000,009 = (2^2 + 17^2)(7^2 + 58^2)$$
$$= 293 \cdot 3413.$$

7.3.1. Suppose that $p \in \mathbb{Z}$ is a prime. If $p = a^2 + b^2$ then p = (a+bi)(a-bi). As

$$N(a+bi) = a^2 + b^2 = p,$$

a prime integer it follows that a+bi is a prime in the Gaussian integers. The associates of a+bi are a+bi, -b+ai, -a-bi and b-ai. The associates of a-bi are the conjugates of these. All eight complex numbers give the same way to write p as a sum of squares.

As $\mathbb{Z}[i]$ is a UFD, there is then only one way to write p as a sum of squares.