MODEL ANSWERS TO THE FIRST HOMEWORK

7.1.1. By assumption r is a quadratic residue of p. Let s be the inverse of r modulo p. It follows that s is also a quadratic residue of p. Pick a such that $a^{2} \equiv s \bmod p$. Apply (1.2) to a and $\lambda=g$. Then we may find u and v such that

$$
a u \equiv v \quad \bmod p
$$

where $0<u<g$ and $0<|v| \leq p / g$. As v is an integer it follows that $0<|v| \leq h$. Squaring both sides gives

$$
s u^{2} \equiv v^{2} \quad \bmod p .
$$

Multiplying both sides by r gives

$$
s^{2} \equiv r v^{2} \quad \bmod p
$$

7.1.2. Suppose that we consider integers $x_{1}, x_{2}, \ldots, x_{s}$ such that $\left|x_{j}\right| \leq$ H. If

$$
y_{i}=\sum_{j} a_{i j} x_{j}
$$

then

$$
\begin{aligned}
\left|y_{i}\right| & =\left|\sum_{j} a_{i j} x_{j}\right| \\
& \leq \sum_{j}\left|a_{i j} x_{j}\right| \\
& =\sum_{j}\left|a_{i j}\right|\left|x_{j}\right| \\
& \leq \sum_{j} A H \\
& =s A H .
\end{aligned}
$$

The number of choices of s-stuples $\left(x_{1}, x_{2}, \ldots, x_{s}\right)$ is then $(2 H+1)^{s}$ and the number of possible r-tuples $\left(y_{1}, y_{2}, \ldots, y_{r}\right)$ is as most $(2 s A H+1)^{r}$. If

$$
(2 s A H+1)^{r}<(2 H+1)^{s},
$$

then by the pigeonhole principle we must have two different s-tuples $\left(x_{1}, x_{2}, \ldots, x_{s}\right)$ and $\left(w_{1}, w_{2}, \ldots, w_{s}\right)$ which give rise to the same r-tuple $\left(y_{1}, y_{2}, \ldots, y_{r}\right)$.

The difference ($u_{1}=x_{1}-w_{1}, u_{2}=x_{2}-w_{2}, \ldots, u_{r}=x_{r}-w_{r}$) is then a solution to the system of linear homogeneous equations. If

$$
2 H+1 \geq(s A)^{r /(s-r)}
$$

then

$$
\begin{aligned}
(2 s A H+1)^{r} & <(s A(2 H+1))^{r} \\
& =(s A)^{r}(2 H+1)^{r} \\
& =(s A)^{r}(2 H+1)^{r-s}(2 H+1)^{s} \\
& <(2 H+1)^{s} .
\end{aligned}
$$

7.2.2. (a) Pick u such that $u^{2} \equiv-1 \bmod p$. By (1.2) we may find r and s such that

$$
u s \equiv r \quad \bmod p
$$

where $0<s<\sqrt{p}$ and $|r| \leq \sqrt{p}$. If $r>0$ then put $x=s$ and $y=r$. If $r<0$ then put $x=-r$ and $y=s$. As $u(-r) \equiv s \bmod p$, either way we have $u x \equiv y \bmod p, 0<x<\sqrt{p}$ and $0<y<\sqrt{p}$.
Note that $x^{2}+y^{2} \equiv 0 \bmod p$. As

$$
\begin{aligned}
0 & <x^{2}+y^{2} \\
& =t p \\
& <2 p^{2} .
\end{aligned}
$$

It follows that $x^{2}+y^{2}=p$.
(b) If $p=2$ then take $x=0$ and $y=1$. Otherwise, pick u such that $u^{2} \equiv-2 \bmod p$. By (1.2) we may find r and s such that

$$
u s \equiv r \quad \bmod p
$$

where $0<s<\sqrt{p}$ and $|r| \leq \sqrt{p}$. If $r>0$ then let $\lambda=s$ and $\mu=r$. If $r<0$ then let $\lambda=-s$ and $\mu=r$. As $u(-r) \equiv 2 s \bmod p$, dividing through by 2 , it follows that $\lambda^{2}+2 \mu^{2} \equiv 0 \bmod p, 0<\lambda<\sqrt{p}$ and $0<\mu<\sqrt{p}$. As

$$
\begin{aligned}
0 & <\lambda^{2}+2 \mu^{2} \\
& =t p \\
& <3 p^{2} .
\end{aligned}
$$

It follows that either $\lambda^{2}+2 \mu^{2}=p$ or $\lambda^{2}+2 \mu^{2}=2 p$. In the former case put $x=\lambda$ and $y=\mu$. In the latter case, $\lambda=2 y$ must be even. Let $x=\mu$. Dividing through by 2 we get $2 y^{2}+x^{2}=p$. Either way, we can find x and y such that $x^{2}+2 y^{2}=p$.
(c) Presumably one should assume that $p>2$. If $p=3$ then take $x=0$ and $y=1$. Otherwise, pick u such that $u^{2} \equiv-3 \bmod p$. By (1.2) we may find r and s such that

$$
u s \equiv r \quad \bmod p
$$

where $0<s<\sqrt{p}$ and $|r| \leq \sqrt{p}$. We may assume that r and s are coprime. If $r>0$ then let $\lambda=s$ and $\mu=r$. If $r<0$ then let $\lambda=-s$ and $\mu=r$. As $u(-r) \equiv 3 s \bmod p$, dividing through by 3 , it follows that $\lambda^{2}+3 \mu^{2} \equiv 0 \bmod p, 0<\lambda<\sqrt{p}$ and $0<\mu<\sqrt{p}$. As

$$
\begin{aligned}
0 & <\lambda^{2}+3 \mu^{2} \\
& =t p \\
& <4 p^{2} .
\end{aligned}
$$

It follows that either $\lambda^{2}+3 \mu^{2}=p$ or $\lambda^{2}+3 \mu^{2}=2 p$ or $\lambda^{2}+3 \mu^{2}=3 p$. In the second case if one of λ or μ is even then so is the other, a contradiction. Thus we may assume that λ and μ are both odd. Reducing modulo 4 and as p is odd, we get

$$
1+3 \equiv 2 \bmod 4
$$

a contradiction. Thus the second case does not occur.
In the first case put $x=\lambda$ and $y=\mu$. In the third case, $\lambda=3 y$ must be divisible by 3 . Let $x=\mu$. Dividing through by 3 we get $3 y^{2}+x^{2}=p$. Either way, we can find x and y such that $x^{2}+3 y^{2}=p$.
(d) -5 is a residue of 7 . Indeed, $3^{2}=9 \equiv-5 \bmod 7$. But $x^{2}+5 y^{2}$ is never equal to 7 . Indeed, $y \leq 1$. If $y=0$ we want $x^{2}=7$, impossible. If $y=1$ we want $x^{2}=2$ also impossible.
More generally, consider primes q congruent to 1 modulo 4. Pick an integer a such that a is not a quadratic residue of q. Let $p>q$ be a prime congruent to 3 modulo 4 and to a modulo q (infinitely many primes p and q exist by Dirichlet's theorem). As q is congruent to one modulo 4 , by quadratic reciprocity we have

$$
\begin{aligned}
\left(\frac{-q}{p}\right) & =\left(\frac{-1}{p}\right)\left(\frac{q}{p}\right) \\
& =-1\left(\frac{p}{q}\right) \\
& =-1\left(\frac{a}{q}\right) \\
& =1 .
\end{aligned}
$$

Thus $-q$ is a residue of p.

However, if $x^{2}+q y^{2}=p$ then consider reducing modulo 4 . We get

$$
x^{2}+y^{2} \equiv 3 \quad \bmod 4
$$

impossible.
(e) Let $\alpha=a+b \sqrt{2} i$ and $\beta=c+d \sqrt{2} i$. Let

$$
N(\alpha)=a^{2}+2 b^{2}
$$

Note that

$$
N(\alpha)=\alpha \bar{\alpha}
$$

We have

$$
\begin{aligned}
N(\alpha \beta) & =(\alpha \beta) \overline{\alpha \beta} \\
& =\alpha \bar{\alpha} \beta \bar{\beta} \\
& =N(\alpha) N(\beta) .
\end{aligned}
$$

Similar calculations pertain, replacing $\sqrt{2}$ by $\sqrt{3}$.
Thus the set of numbers which are of the form $x^{2}+2 y^{2}$, or $x^{2}+3 y^{2}$, are closed under multiplication.
Thus every natural number n such that every -2 is a residue of every prime p dividing is of the form $x^{2}+2 y^{2}$. Similarly every natural natural number n such that every -3 is a residue of every odd prime p dividing and which is divisible by a power of 4 , is of the form $x^{2}+3 y^{2}$.
7.2 .3 . As N is odd we may assume that a and c are odd and b and d are even. Let

$$
u=(a-c, d-b) \quad \text { and } \quad v=(a+c, b+d)
$$

Then

$$
a-c=l u \quad \text { and } \quad d-b=m u
$$

for coprime integers l and m. Note that as

$$
a^{2}+b^{2}=c^{2}+d^{2} \quad \text { it follows that } \quad a^{2}-c^{2}=b^{2}-d^{2}
$$

Factoring both sides, we get

$$
(a-c)(a+c)=(b-d)(b+d)
$$

It follows that

$$
l(a+c)=m(b+d)
$$

As l and m are coprime it follows that

$$
(a+c)=m \alpha \quad \text { and } \quad b+d=l \beta .
$$

Cancelling we see that $\alpha=\beta$ is the greatest common divisor v. Thus

$$
(a+c)=m v \quad \underset{4}{\text { and }} \quad b+d=l v .
$$

Note that u and v are even. We have

$$
\begin{aligned}
{\left[\left(\frac{u}{2}\right)^{2}+\left(\frac{v}{2}\right)^{2}\right]\left(m^{2}+l^{2}\right) } & =\left(\frac{m u}{2}+\frac{l v}{2}\right)^{2}+\left(\frac{l u}{2}-\frac{m v}{2}\right)^{2} \\
& =\left(\frac{d-b}{2}+\frac{b+d}{2}\right)^{2}+\left(\frac{a-c}{2}-\frac{a+c}{2}\right)^{2} \\
& =d^{2}+c^{2} \\
& =N
\end{aligned}
$$

7.2.4. It is expedient to find another way to write $1,000,009$ as a sum of squares. This is easy,

$$
1,000,009=3^{2}+(1,000)^{2} .
$$

In this case,

$$
a=235 \quad b=972 \quad c=3 \quad \text { and } \quad d=1,000 .
$$

Therefore

$$
\begin{aligned}
u & =(232,28) \\
& =2(116,14) \\
& =4(58,7) \\
& =4 .
\end{aligned}
$$

and

$$
\begin{aligned}
v & =(238,1972) \\
& =2(119,986) \\
& =2 \cdot 17(7,58)) \\
& =34 .
\end{aligned}
$$

We have

$$
232=4 \cdot l
$$

so that $l=58$ and

$$
28=4 m
$$

so that $m=7$. Thus

$$
\begin{aligned}
1,000,009 & =\left(2^{2}+17^{2}\right)\left(7^{2}+58^{2}\right) \\
& =293 \cdot 3413
\end{aligned}
$$

7.3.1. Suppose that $p \in \mathbb{Z}$ is a prime. If $p=a^{2}+b^{2}$ then $p=$ $(a+b i)(a-b i)$. As

$$
N(a+b i)=a^{2}+b^{2}=p,
$$

a prime integer it follows that $a+b i$ is a prime in the Gaussian integers. The associates of $a+b i$ are $a+b i,-b+a i,-a-b i$ and $b-a i$. The associates of $a-b i$ are the conjugates of these. All eight complex numbers give the same way to write p as a sum of squares.
As $\mathbb{Z}[i]$ is a UFD, there is then only one way to write p as a sum of squares.

