
9. p-adic numbers: I

The real numbers R are an extension of the rational numbers Q. It
turns out that for every prime p there is an alternative way to extend
the rational numbers.

One way to think of a real number is as a decimal, with a poten-
tially infinite expansion. If you think back, the trickiest part of this
whole story is how the rational numbers sit inside the reals. Ratio-
nals correspond to reals with a possible infinite, but repeating decimal
expansion.

The impetus for p-adic numbers comes from the problem of solving
polynomial equations modulo higher and higher powers of p. For ex-
ample, imagine finding the square root of 2. As in Math 104A one can
mimic Newton-Raphson. We start with the function

f(x) = x2 − 2.

Over the reals we start with an approximate solution x0 = 3/2 = 1.5.
Suppose the actual root is ξ = x0 + h. We have

0 = f(ξ)

= f(x0) + f ′(x0)h+ . . . .

We assume that h is small, so that the higher terms are small. If we
ignore the higher terms we get the next approximation:

0 = f(x0) + f ′(x0)h,

so that

h =
−f(x0)

f ′(x0)
.

Then

x1 = x0 + h,

and we keep going. Since f ′(x) = 2x, f ′(x0) = 3 and so

h = − 1

12
.

Thus

x1 =
17

12
is a better approximation, and so on.

Now suppose that we wanted to solve this equation modulo higher
and higher powers of 7. 2 is a quadratic residue modulo 7. In fact
32 = 9 ≡ 2 mod 7.
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To get an approximation modulo 72 we have to solve a linear equa-
tion:

f(3 + 7t) = 7 + 7t · 6 ≡ 0 mod 72.

Thus 6t ≡ −1 mod 7, so that t = 1. Thus 3+1 ·7 is a solution modulo
72. To get a solution modulo 73 we have to solve

f(3 + 1 · 7 + t · 72) = (3 + 1 · 7)2 − 2 + 2(3 + 1 · 7) · 72t ≡ 0 mod 73.

This reduces to 6t+ 2 ≡ 0 mod 7, so that t = 2. Thus 3 + 1 · 7 + 2 · 72

is a solution modulo 73.
To get a solution modulo 74 we have to solve

f(3+1·7+2·72+t·73) = (3+1·7+2·72)2−2+2(3+1·7+2·72)·73t ≡ 0 mod 74.

This reduces to 6t+ 34 ≡ 0 mod 7, so that t = 6. Thus 3 + 1 · 7 + 2 ·
72 + 6 · 73 is a solution modulo 74.

We can continue this process indefinitely. It is tempting to try to
make sense of an infinite expansion

ξ = 3 + 1 · 7 + 2 · 72 + 6 · 73 + . . . ,

which is an exact solution to the equation x2 − 2 = 0.
This suggests we make a definition:

Definition 9.1. Let p be a prime. A p-adic integer is a sequence

a0, a1, a2, . . .

of integers from 0 to p− 1.

It is convenient to denote a p-adic integer as

a0 + a1 · p+ a2 · p2 + . . . .

Note that the usual integers all have a representation as a p-adic integer,
where all but finitely many terms are zero.

To add two such sequences we add corresponding terms and carry
as appropriate. Similarly we multiply two such sequences in the usual
way, remembering to carry a term that exceeds p− 1. It is not hard to
see that this extends the usual rules of addition and multiplication of
integers. In fact

Proposition 9.2. The set Op of all p-adic integers is a ring. If Rp

denotes the set of all rational numbers a/b where p does not divide b,
then there is a natural ring homomorphism

Rp −→ Op.
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Note that if we add and multiply two rational numbers whose de-
nominator is not divisible by p then we get a rational number which is
not divisible by p. Thus Rp is indeed a subring of all rational numbers.
Not only do we extend the usual rules of addition and multiplication
of ordinary integers, we actually extend the usual rules of addition and
multiplication of rational numbers of the form a/b, where p does not
divide b.

Suppose that we square ξ,

ξ = 3 + 1 · 7 + 2 · 72 + 6 · 73 + . . . ,

If we square the usual way, we get

ξ = 9 + 6 · 7 + 13 · 72 + 40 · 73 + . . . .

Now if we subtract 2 and carry then we see that

ξ2 = 2.

One can extend the p-adic integers to p-adic numbers Qp by formally
inverting p. A p-adic number is then of the form

1

pN
(a0 + a1 · p+ a2 · p2 + . . . )

where the expression in brackets is a p-adic integer. Qp is a field,
meaning that one can add, multiply, subsract and divide. In practice
this means we have show every non-zero p-adic integer has an inverse.
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