
8. Conic sections

We can use Legendre’s theorem, (7.1), to characterise all rational
solutions of the general quadratic equation in two variables

ax2 + bxy + cy2 + dx + ey + ef = 0,

where a, b, c, d, e and f are rational numbers. The defines a conic
section in R2 (a line, circle, parabola, ellipse or hyperbola, depending
on the coefficients) and we want to locate all of the points with rational
coordinates.

If b = 0 and ac = 0 then this means that the equation is linear in one
variable (and we have either a line or a parabola). We can assign any
value we want to the other variable and still find a rational solution.

If b = 0 and ac 6= 0 then we can complete the square in both x and
y, so that we make the change of variables x = x′ + h and y = y′ + k
and remove the linear terms in x and y. This reduces our equation
down to

Ax2 + By2 + C = 0.

If b 6= 0 and a = c = 0 then consider the substitution

x = x′ − y′ and y = x′ + y′.

As

xy = (x′ − y′)(x′ + y′)

= x′2 − y′2,

we are reduced to the preceding case, when b = 0 and ac 6= 0.
If b 6= 0 and one of a and c is not zero then, possibly switching x

and y, we may suppose that a 6= 0. In this case the substitution

x = x′ − by′/2a and y′ = y,

reduces us to the case b = 0.
Putting all of this together, we are reduced to considering the case

ax2 + by2 + c = 0.

The case when abc = 0 can be dealt with by hand (it turns on whether
the ratio of the other two numbers is a square).

Clearing denominators we may assume that a, b and c are integers.
If x and y are rational solutions of this equation then x = X/Z and
y = Y/Z for some common denominator Z. Multiplying through by
Z2, we are reduced to considering integral solutions of the equation

aX2 + bY 2 + cZ2 = 0,

which we have already analysed.
1



Thus there is an algorithm to decide whether or not the conic C

ax2 + bxy + cy2 + dx + ey + ef = 0,

has a rational solution.
Note that once we are given one rational solution then in fact there

are infinitely many and there is a simple way to describe all of them.
Indeed, let P0 = (x0, y0) be a rational point on the curve C. Consider
the line L(m) through P0 with slope m,

y − y0 = m(x− x0).

We suppose that m ∈ Q. This line meets the conic at two points P0

and an additional point P1(m). Suppose that P1(m) has coordinates
(x1, y1). If we use the equation of the line to eliminate y from the
equation for C, then we get a quadratic equation in x with rational
coefficients. By assumption x0 is one root of this equation. This implies
that x1 is also rational (for example, the sum x0 + x1 of the roots is
minus the coefficient of x). Now using the equation of the line it follows
that y1 is rational as well.

Conversely, suppose that P1 = (x1, y1) 6= P0 is a rational point.
Consider the line L connecting P0 to P1. This line has a slope m and
contains P0, so that L = L(m). Thus we capture all rational points
on C this way. Note that we consider the vertical line x = x0 to have
rational slope ∞.

It is fun and instructive to carry out this process for the unit circle

x2 + y2 = 1.

Let P0 = (−1, 0). The line L(m) though P0 with slope m is

y = m(x + 1).

Substituting this into the equation of the circle gives

x2 + m2(x + 1)2 = 1,

so that

(1 + m2)x2 + 2m2x + m2 − 1 = 0.

Dividing through by 1 + m2, we get

x2 +
2m

1 + m2
x +

m2 − 1

1 + m2
= 0.

As one root x0 is −1 and the product x0x1 of the roots is the constant
term, we get

x1 =
1−m2

1 + m2
.
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Thus

y1 = m(x1 + 1)

=
2m

1 + m2

It follows that the general rational point (x, y) on the circle x2+y2 =
1 is

x =
1−m2

1 + m2
and y =

2m

1 + m2
.

Now if we put m = a/b, a and b integers, (a, b) = 1, we obtain every
integral solution of the equation

x2 + y2 = z2.

We get

x = c(a2 − b2) y = 2abc and z = c(a2 + b2).

Note that as z + x and z − x are both integers, it follows that 2c ∈ Z.
If we have a primitive solution, that is, (x, y) = 1, then at most one

of x and y is even. But if y is odd then a and b are both odd and
a2− b2 is divisible by 4, so that x is even and so precisely one of x and
y is even.

Suppose that y is even. Then x is odd and so a and b have opposite
parity. It follows that c = ±1. It is not hard to see these conditions
are sufficient so that

Theorem 8.1. Every primitive solution of the equation

x2 + y2 = 1

with y even is given by

x = c(a2 − b2) y = 2abc and z = c(a2 + b2)

with c ± 1 and a unique pair a, b ∈ Z such that (a, b) = 1, and a 6≡ b
mod 2, and vice-versa.

Every other solution for which a larger power of 2 divides y but not
x is given by the same formula, with c 6= ±1 and a unique pair a, b ∈ Z
such that (a, b) = 1, and a 6≡ b mod 2, and vice-versa.

It is interesting to consider the geometry of the zeroes of any poly-
nomial f(x, y) in x and y. We get a curve C in the plane defined
by

f(x, y) = 0.
3



It turns out that there are polynomials of arbitrarily large degree d
which can be reduced by a sequence of substitutions of rational func-
tions with rational coefficients to conics, so that finding rational so-
lutions to on the original curve is reduced to finding solutions on a
conic.

In fact one can attach to any plane curve C a non-negative integer
g called the genus. The genus is a birational invariant, which means
that it is unchanged, even if we substitute for x and y rational functions
(which don’t necessarily have rational coefficients). Curves which can
be reduced to conics have genus zero.

Unfortunately, even if a curve has genus zero, the birational transfor-
mations which turn it into a curve of genus zero need not have rational
coefficients.

Let us consider an example. Consider the curve C given by the
equation

2(x2 + y2)2 = x2 − y2.

This looks like an infinity symbol and it is called a lemniscate.
It is not hard to check that this is a curve of genus zero. For example,

the circle

x2 + y2 = t(x− y),

is tangent to the original curve C at the origin and meets C in one
further point. Taking the second equation and plugging it into the first
equation one gets

2t2(x− y)2 = x2 − y2.

It follows that

2t2(x− y) = x + y.

Thus

y =
2t2 − 1

2t2 + 1
x.

Plugging this into the equation of the circle we get

x2

(
1 +

(2t2 − 1)2

(2t2 + 1)2

)
= xt

(
1− (2t2 − 1)

(2t2 + 1)

)
,

so that

x2

(
(2t2 − 1)2 + (2t2 + 1)2

(2t2 + 1)2

)
=

2xt

(2t2 + 1)
.

As expected x = 0 is a solution and the other solution is

x =
t(2t2 + 1)

4t4 + 1
so that y =

t(2t2 − 1)

4t4 + 1
.
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This gives a rational parametrisation of C and if t is rational then
we get rational values for x and y. However it is not so clear we get all
rational values for x and y this way.

Instead, consider the change of variables

u =
x

x2 + y2
and v =

y

x2 + y2
.

On C we see that

u2 − v2 =
x2

(x2 + y2)2
− y2

(x2 + y2)2

=
2(x2 − y2)

(x2 − y2)

= 2.

Conversely, since

u2 + v2 =
x2

(x2 + y2)2
+

y2

(x2 + y2)2

=
1

x2 + y2

we have the reciprocal relation

x =
u

u2 + v2
and y =

v

u2 + v2
.

Thus we get a birational transformation between the original curve and
the hyperbola

u2 − v2 = 2.

This means u and v are rational functions of x and y and vice-versa.
Now we can figure out the rational points of the hyperbola and use this
to get the rational points of C. The birational map sets up a bijection
between the rational points, away from the origin.
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