8. Conic sections

We can use Legendre's theorem, (7.1), to characterise all rational solutions of the general quadratic equation in two variables

$$
a x^{2}+b x y+c y^{2}+d x+e y+e f=0,
$$

where a, b, c, d, e and f are rational numbers. The defines a conic section in \mathbb{R}^{2} (a line, circle, parabola, ellipse or hyperbola, depending on the coefficients) and we want to locate all of the points with rational coordinates.

If $b=0$ and $a c=0$ then this means that the equation is linear in one variable (and we have either a line or a parabola). We can assign any value we want to the other variable and still find a rational solution.

If $b=0$ and $a c \neq 0$ then we can complete the square in both x and y, so that we make the change of variables $x=x^{\prime}+h$ and $y=y^{\prime}+k$ and remove the linear terms in x and y. This reduces our equation down to

$$
A x^{2}+B y^{2}+C=0
$$

If $b \neq 0$ and $a=c=0$ then consider the substitution

$$
x=x^{\prime}-y^{\prime} \quad \text { and } \quad y=x^{\prime}+y^{\prime}
$$

As

$$
\begin{aligned}
x y & =\left(x^{\prime}-y^{\prime}\right)\left(x^{\prime}+y^{\prime}\right) \\
& =x^{\prime 2}-y^{\prime 2},
\end{aligned}
$$

we are reduced to the preceding case, when $b=0$ and $a c \neq 0$.
If $b \neq 0$ and one of a and c is not zero then, possibly switching x and y, we may suppose that $a \neq 0$. In this case the substitution

$$
x=x^{\prime}-b y^{\prime} / 2 a \quad \text { and } \quad y^{\prime}=y
$$

reduces us to the case $b=0$.
Putting all of this together, we are reduced to considering the case

$$
a x^{2}+b y^{2}+c=0 .
$$

The case when $a b c=0$ can be dealt with by hand (it turns on whether the ratio of the other two numbers is a square).

Clearing denominators we may assume that a, b and c are integers. If x and y are rational solutions of this equation then $x=X / Z$ and $y=Y / Z$ for some common denominator Z. Multiplying through by Z^{2}, we are reduced to considering integral solutions of the equation

$$
a X^{2}+b Y^{2}+c Z^{2}=0
$$

which we have already analysed.

Thus there is an algorithm to decide whether or not the conic C

$$
a x^{2}+b x y+c y^{2}+d x+e y+e f=0,
$$

has a rational solution.
Note that once we are given one rational solution then in fact there are infinitely many and there is a simple way to describe all of them. Indeed, let $P_{0}=\left(x_{0}, y_{0}\right)$ be a rational point on the curve C. Consider the line $L(m)$ through P_{0} with slope m,

$$
y-y_{0}=m\left(x-x_{0}\right) .
$$

We suppose that $m \in \mathbb{Q}$. This line meets the conic at two points P_{0} and an additional point $P_{1}(m)$. Suppose that $P_{1}(m)$ has coordinates $\left(x_{1}, y_{1}\right)$. If we use the equation of the line to eliminate y from the equation for C, then we get a quadratic equation in x with rational coefficients. By assumption x_{0} is one root of this equation. This implies that x_{1} is also rational (for example, the sum $x_{0}+x_{1}$ of the roots is minus the coefficient of x). Now using the equation of the line it follows that y_{1} is rational as well.

Conversely, suppose that $P_{1}=\left(x_{1}, y_{1}\right) \neq P_{0}$ is a rational point. Consider the line L connecting P_{0} to P_{1}. This line has a slope m and contains P_{0}, so that $L=L(m)$. Thus we capture all rational points on C this way. Note that we consider the vertical line $x=x_{0}$ to have rational slope ∞.

It is fun and instructive to carry out this process for the unit circle

$$
x^{2}+y^{2}=1 .
$$

Let $P_{0}=(-1,0)$. The line $L(m)$ though P_{0} with slope m is

$$
y=m(x+1) .
$$

Substituting this into the equation of the circle gives

$$
x^{2}+m^{2}(x+1)^{2}=1,
$$

so that

$$
\left(1+m^{2}\right) x^{2}+2 m^{2} x+m^{2}-1=0 .
$$

Dividing through by $1+m^{2}$, we get

$$
x^{2}+\frac{2 m}{1+m^{2}} x+\frac{m^{2}-1}{1+m^{2}}=0 .
$$

As one root x_{0} is -1 and the product $x_{0} x_{1}$ of the roots is the constant term, we get

$$
x_{1}=\frac{1-m^{2}}{\frac{1}{2}+m^{2}}
$$

Thus

$$
\begin{aligned}
y_{1} & =m\left(x_{1}+1\right) \\
& =\frac{2 m}{1+m^{2}}
\end{aligned}
$$

It follows that the general rational point (x, y) on the circle $x^{2}+y^{2}=$ 1 is

$$
x=\frac{1-m^{2}}{1+m^{2}} \quad \text { and } \quad y=\frac{2 m}{1+m^{2}} .
$$

Now if we put $m=a / b, a$ and b integers, $(a, b)=1$, we obtain every integral solution of the equation

$$
x^{2}+y^{2}=z^{2} .
$$

We get

$$
x=c\left(a^{2}-b^{2}\right) \quad y=2 a b c \quad \text { and } \quad z=c\left(a^{2}+b^{2}\right)
$$

Note that as $z+x$ and $z-x$ are both integers, it follows that $2 c \in \mathbb{Z}$.
If we have a primitive solution, that is, $(x, y)=1$, then at most one of x and y is even. But if y is odd then a and b are both odd and $a^{2}-b^{2}$ is divisible by 4 , so that x is even and so precisely one of x and y is even.

Suppose that y is even. Then x is odd and so a and b have opposite parity. It follows that $c= \pm 1$. It is not hard to see these conditions are sufficient so that

Theorem 8.1. Every primitive solution of the equation

$$
x^{2}+y^{2}=1
$$

with y even is given by

$$
x=c\left(a^{2}-b^{2}\right) \quad y=2 a b c \quad \text { and } \quad z=c\left(a^{2}+b^{2}\right)
$$

with $c \pm 1$ and a unique pair $a, b \in \mathbb{Z}$ such that $(a, b)=1$, and $a \not \equiv b$ $\bmod 2$, and vice-versa.

Every other solution for which a larger power of 2 divides y but not x is given by the same formula, with $c \neq \pm 1$ and a unique pair $a, b \in \mathbb{Z}$ such that $(a, b)=1$, and $a \not \equiv b \bmod 2$, and vice-versa.

It is interesting to consider the geometry of the zeroes of any polynomial $f(x, y)$ in x and y. We get a curve C in the plane defined by

$$
f(x, y)=0 .
$$

It turns out that there are polynomials of arbitrarily large degree d which can be reduced by a sequence of substitutions of rational functions with rational coefficients to conics, so that finding rational solutions to on the original curve is reduced to finding solutions on a conic.

In fact one can attach to any plane curve C a non-negative integer g called the genus. The genus is a birational invariant, which means that it is unchanged, even if we substitute for x and y rational functions (which don't necessarily have rational coefficients). Curves which can be reduced to conics have genus zero.

Unfortunately, even if a curve has genus zero, the birational transformations which turn it into a curve of genus zero need not have rational coefficients.

Let us consider an example. Consider the curve C given by the equation

$$
2\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}
$$

This looks like an infinity symbol and it is called a lemniscate.
It is not hard to check that this is a curve of genus zero. For example, the circle

$$
x^{2}+y^{2}=t(x-y),
$$

is tangent to the original curve C at the origin and meets C in one further point. Taking the second equation and plugging it into the first equation one gets

$$
2 t^{2}(x-y)^{2}=x^{2}-y^{2}
$$

It follows that

$$
2 t^{2}(x-y)=x+y
$$

Thus

$$
y=\frac{2 t^{2}-1}{2 t^{2}+1} x
$$

Plugging this into the equation of the circle we get

$$
x^{2}\left(1+\frac{\left(2 t^{2}-1\right)^{2}}{\left(2 t^{2}+1\right)^{2}}\right)=x t\left(1-\frac{\left(2 t^{2}-1\right)}{\left(2 t^{2}+1\right)}\right)
$$

so that

$$
x^{2}\left(\frac{\left(2 t^{2}-1\right)^{2}+\left(2 t^{2}+1\right)^{2}}{\left(2 t^{2}+1\right)^{2}}\right)=\frac{2 x t}{\left(2 t^{2}+1\right)}
$$

As expected $x=0$ is a solution and the other solution is

$$
x=\frac{t\left(2 t^{2}+1\right)}{4 t^{4}+1} \quad \text { so that } \quad y=\frac{t\left(2 t^{2}-1\right)}{4 t^{4}+1} .
$$

This gives a rational parametrisation of C and if t is rational then we get rational values for x and y. However it is not so clear we get all rational values for x and y this way.

Instead, consider the change of variables

$$
u=\frac{x}{x^{2}+y^{2}} \quad \text { and } \quad v=\frac{y}{x^{2}+y^{2}}
$$

On C we see that

$$
\begin{aligned}
u^{2}-v^{2} & =\frac{x^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{2\left(x^{2}-y^{2}\right)}{\left(x^{2}-y^{2}\right)} \\
& =2 .
\end{aligned}
$$

Conversely, since

$$
\begin{aligned}
u^{2}+v^{2} & =\frac{x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{1}{x^{2}+y^{2}}
\end{aligned}
$$

we have the reciprocal relation

$$
x=\frac{u}{u^{2}+v^{2}} \quad \text { and } \quad y=\frac{v}{u^{2}+v^{2}} .
$$

Thus we get a birational transformation between the original curve and the hyperbola

$$
u^{2}-v^{2}=2 .
$$

This means u and v are rational functions of x and y and vice-versa. Now we can figure out the rational points of the hyperbola and use this to get the rational points of C. The birational map sets up a bijection between the rational points, away from the origin.

