
7. Diophantine Equations

We start with a very interesting result due to Legendre.

Theorem 7.1. Suppose that a, b, c ∈ Z are nonzero, pairwise coprime,
square-free. Then the equation

f(x, y, z) = ax2 + by2 + cz2 = 0

has a non-trivial integral solution (so x, y and z are integers, not all
zero) if and only if a, b and c do not all have the same sign and −ab,
−bc and −ca are quadratic residues of |c|, |a| and |b|, respectively.

The hypotheses might seem restrictive but in fact they are not. Sup-
pose that we start with Ax2 + By2 + Cz2, ABC 6= 0. If A, B and
C have a common factor then we can obviously divide it out. At the
other extreme, if one of A, B and C have a square factor then we can
absorb this factor into x2, y2 and z2. Suppose that d = (A,B) > 1.
Then we can multiply by d, to get coefficients d2A′, d2B′ and dC and
absorb d2 into x2 and y2. If we repeat this process it is clear that we
end up with coefficients that satisfy the hypotheses of (7.1) and we
have not changed the sign of the coefficients.

Proof of (7.1). We first check necessity. It is clear that if we can find
a nonzero real solution, let alone a nonzero integral solution, then a, b
and c cannot have the same sign. If there is a non-trivial solution then
there is clearly a non-trivial solution for which the greatest common
divisor of x, y and z is one.

In this case (x, c) = (y, c) = 1. Indeed, if p|x and p|c then p|by2 so
that p|y as (b, c) = 1. But then p does not divide z and p2|(ax2 + by2),
so that p2|c, a contradiction. Thus (x, c) = (y, c) = 1. As

ax2 + by2 ≡ 0 mod c,

it follows that
(axy−1)2 ≡ −ab mod c.

Therefore −ab is a quadratic residue of |c|. By symmetry all of the
other conditions hold as well.

Now we check sufficiency. Suppose that |c| > 1 and that −ab is a
quadratic residue of c. The we can find z such that

z2 ≡ −ab mod c.

Then
az2 + ba2 ≡ 0 mod c,

so that we can find a solution (xc, yc) of

ax2 + by2 ≡ 0 mod c,
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where (c, xc) = (c, yc) = 1. Let t = x/y. As the division algorithm
holds for monic polynomials over Zc, it follows that at2 + b factors, so
that ax2 + by2 factors into a product of linear polynomials

ax2 + by2 = (a1x+ b1y)(a2x+ b2y)

in the ring Zc[x, y]. It follows that we can factor

f(x, y, z) ≡ (r1x+ r2y + r3z)(s1x+ s2y + s3z) mod c

≡ gc(x, y, z)hc(x, y, z) mod c.

Similarly, if |a| > 1 and |b| > 1 we can also factor

f(x, y, z) ≡ ga(x, y, z)ha(x, y, z) mod a

≡ gb(x, y, z)hb(x, y, z) mod b.

By the Chinese Remainder Theorem, we can find polynomials g(x, y, z)
and h(x, y, z) whose reductions modulo a, b and c are the given poly-
nomials. It follows that

f(x, y, z) = g(x, y, z)h(x, y, z) mod |abc|.
We have proved this if all three of |a|, |b| and |c| > 1, but it obviously
also holds if at least one is not equal to 1.

Now if |a| = |b| = |c| = 1 then the result is easy. Otherwise, since
|abc| > 1 and abc is square-free, at least one of

λ1 =
√
|bc| λ2 =

√
|ac| and λ3 =

√
|ab|

is not an integer. Increase this one very slightly and apply (1.1) to get
x, y and z such that

g(x, y, z) ≡ 0 mod |abc| |x| < λ1 |y| < λ2 and |z| < λ3.

We may assume that a > 0, b > 0 and c < 0. It follows that

f(x, y, z) < a|bc|+ b|ca|+ c · 0
= 2|abc|.

On the other hand,

f(x, y, z) > a · 0 + b · 0 + c|ab|
= −|abc|.

As f(x, y, z) ≡ 0 mod |abc| it follows that

f(x, y, z) = 0 or |abc| = −abc.
We may assume that we have the latter case, otherwise we are done.
It follows that

ax2 + by2 + c(z2 + ab) = 0.
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Thus
(ax2 + by2)(z2 + ab) + c(z2 + ab)2 = 0.

This implies that

a(xz + by)2 + b(yz − ax)2 + c(z2 + ab)2 = 0.

Note that z2 + ab is not zero, as it is positive. �

One very interesting feature of trying to find solutions to an equation
of the form

ax2 + by2 + cz2 = 0,

is that not only does (7.1) furnish a way to decide if there is a solution,
in fact it is not hard to show that one can find a non-trivial solution
such that

max(|x|, |y|, |z|) < 2 max(a2, b2, c2),

so that there is also an algorithm to find solutions, not only determine
whether or not they exist.
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