4. GAUSSIAN INTEGERS

We are going to use the fact that Z[i] is a UFD, meaning that we
can factor Gaussian integers into products of Gaussian primes and this
factorisation is unique, to count the number of ways to write a natural
number as a sum of squares.

Recall

Definition 4.1. Let a + bi € Z[i] be a Gaussian integer.
The norm of a + bi, denoted N(a + bi), is a® + b?.

Note that the norm of a + bi is the product of a + bi and a — bz, the
conjugate of a + bi.

Lemma 4.2. The norm is multiplicative, that is,

N(aB) = N(a)N(8).
Proof. This is a restatement of (2.1). O
Lemma 4.3. The units in Z[i] are precisely the elements of norm 1.

Proof. Suppose that a € Z[i] is a unit. Then we may find 5 such that
af =1 and so
1= N(a)N(B).
Thus N(«a) = 1.
The elements of norm 1 are +1 and 4i. The inverse of 1 is +1 and
the inverse of 41 is Fi, so that elements of norm one are all units. [

Lemma 4.4. Let p € Z be a prime congruent to 3 modulo 4.

Then p is a prime in Z[i].
Proof. Suppose that

p=(a+bi)(c+di).
Taking norms we see that
p? = (a® + b)) (S + d?).

As p = 3 mod 4, p is not a sum of squares. Thus a® + > = p? and
c? 4+ d? =1, so that ¢ + di is a unit, or vice-versa. U
Lemma 4.5. Let a« = a + bi be a Gaussian integer whose norm 1is a
prime p.

Then « is a prime Gaussian integer.

Proof. Suppose that a = 8. Then

p=N(@B)N).
As p is prime we must have N () or N(v) = 1. But then 8 or 7 is a

unit so that « is a prime. O
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Definition-Theorem 4.6. Suppose that
n = 2“n1ne

where ny is a product over primes congruent to 1 modulo four and ns
is a product over primes congruent to 3 modulo four. If ro(n) denotes
the number of representations of n as a sum of two squares then

ra(n) = 0 if ny is not a square
2 47(ny) if ng is a square.

Proof. (2.3) implies that ny must be a square and that all representa-
tions of n as a sum of squares are induced by a multiplying a repre-
sentation of 2“n; by the square root of n;. We are also going to prove
this directly.
Suppose that n = 2 + 2 is a sum of squares. Then
n=(z+iy)(x —iy),

is a product of two conjugate Gaussian integers and vice-versa. It
follows that there is a correspondence between factorisations of n as
products of two conjugate Gaussian integers and representations of n
as a sum of two squares.

So we just have to count the number of ways to write n as a product
of conjugate Gaussian integers. Suppose that

n, = H pzj and Ng = H qjj .

p;=1 mod 4 ¢;=3 mod 4

By what we already proved, s; = 27, is even. Note that
2 =i(1—1)? and  p; = (a; +1bj)(a; — ib))

for some integers a; and b;. Thus

n=i"(1—i[[((a+ib)(a—ib) ][ ¢,
where subscripts have been omitted for clarity and
a >0, b>0 and p=a®+ b

Using the fact that Z[i] is a UFD and the identification of Gaussian
primes, it follows that the divisors of n have the form

x+iy=1d"(1 - H(a + ib)" (a — ib)" H qr,

up to units and re-ordering, where

0<v<3 0<u;<2u, 0<t;<t 0<t;<t, and 0<ry <2r
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We check under what conditions n is the product of = + iy and x — y.
Now

r—iy=(—9)"(1+i)" H(a —ib)" (a + ib)"™ H q
=71 =)™ H(a +ib)?(a — ib)" 1_[(1’"1

So we need u; = u, t;+ty = t, r; = r. Since there are only four distinct
powers of 7, the complete list is given by

(1) [Ja+ ) (a—ab) =[] "

where u, t and r are fixed, v € {0,1,2,3} and t; € {0,1,...,t}. The
total number in this list is

A+ 1) = 47(ny). O
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