4. Gaussian integers

We are going to use the fact that $\mathbb{Z}[i]$ is a UFD, meaning that we can factor Gaussian integers into products of Gaussian primes and this factorisation is unique, to count the number of ways to write a natural number as a sum of squares.

Recall
Definition 4.1. Let $a+b i \in \mathbb{Z}[i]$ be a Gaussian integer.
The norm of $a+b i$, denoted $N(a+b i)$, is $a^{2}+b^{2}$.
Note that the norm of $a+b i$ is the product of $a+b i$ and $a-b i$, the conjugate of $a+b i$.

Lemma 4.2. The norm is multiplicative, that is,

$$
N(\alpha \beta)=N(\alpha) N(\beta)
$$

Proof. This is a restatement of (2.1).
Lemma 4.3. The units in $\mathbb{Z}[i]$ are precisely the elements of norm 1.
Proof. Suppose that $\alpha \in \mathbb{Z}[i]$ is a unit. Then we may find β such that $\alpha \beta=1$ and so

$$
1=N(\alpha) N(\beta)
$$

Thus $N(\alpha)=1$.
The elements of norm 1 are ± 1 and $\pm i$. The inverse of ± 1 is ± 1 and the inverse of $\pm i$ is $\mp i$, so that elements of norm one are all units.
Lemma 4.4. Let $p \in \mathbb{Z}$ be a prime congruent to 3 modulo 4.
Then p is a prime in $\mathbb{Z}[i]$.
Proof. Suppose that

$$
p=(a+b i)(c+d i) .
$$

Taking norms we see that

$$
p^{2}=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) .
$$

As $p \equiv 3 \bmod 4, p$ is not a sum of squares. Thus $a^{2}+b^{2}=p^{2}$ and $c^{2}+d^{2}=1$, so that $c+d i$ is a unit, or vice-versa.

Lemma 4.5. Let $\alpha=a+b i$ be a Gaussian integer whose norm is a prime p.

Then α is a prime Gaussian integer.
Proof. Suppose that $\alpha=\beta \gamma$. Then

$$
p=N(\beta) N(\gamma)
$$

As p is prime we must have $N(\beta)$ or $N(\gamma)=1$. But then β or γ is a unit so that α is a prime.

Definition-Theorem 4.6. Suppose that

$$
n=2^{u} n_{1} n_{2}
$$

where n_{1} is a product over primes congruent to 1 modulo four and n_{2} is a product over primes congruent to 3 modulo four. If $r_{2}(n)$ denotes the number of representations of n as a sum of two squares then

$$
r_{2}(n)= \begin{cases}0 & \text { if } n_{2} \text { is not a square } \\ 4 \tau\left(n_{1}\right) & \text { if } n_{2} \text { is a square. }\end{cases}
$$

Proof. (2.3) implies that n_{2} must be a square and that all representations of n as a sum of squares are induced by a multiplying a representation of $2^{u} n_{1}$ by the square root of n_{1}. We are also going to prove this directly.

Suppose that $n=x^{2}+y^{2}$ is a sum of squares. Then

$$
n=(x+i y)(x-i y)
$$

is a product of two conjugate Gaussian integers and vice-versa. It follows that there is a correspondence between factorisations of n as products of two conjugate Gaussian integers and representations of n as a sum of two squares.

So we just have to count the number of ways to write n as a product of conjugate Gaussian integers. Suppose that

$$
n_{1}=\prod_{p_{j} \equiv 1} p_{\bmod 4} p_{j}^{t_{j}} \quad \text { and } \quad n_{2}=\prod_{q_{j} \equiv 3} q_{\bmod 4}^{s_{j}}
$$

By what we already proved, $s_{j}=2 r_{j}$ is even. Note that

$$
2=i(1-i)^{2} \quad \text { and } \quad p_{j}=\left(a_{j}+i b_{j}\right)\left(a_{j}-i b_{j}\right)
$$

for some integers a_{j} and b_{j}. Thus

$$
n=i^{u}(1-i)^{2 u} \prod((a+i b)(a-i b))^{t} \prod q^{2 r}
$$

where subscripts have been omitted for clarity and

$$
a>0, \quad b>0 \quad \text { and } \quad p=a^{2}+b^{2} .
$$

Using the fact that $\mathbb{Z}[i]$ is a UFD and the identification of Gaussian primes, it follows that the divisors of n have the form

$$
x+i y=i^{v}(1-i)^{u_{1}} \prod(a+i b)^{t_{1}}(a-i b)^{t_{2}} \prod q^{r_{1}}
$$

up to units and re-ordering, where
$0 \leq v \leq 3, \quad 0 \leq u_{1} \leq 2 u, \quad 0 \leq t_{1} \leq t, \quad 0 \leq t_{2} \leq t, \quad$ and $\quad 0 \leq r_{1} \leq 2 r$.

We check under what conditions n is the product of $x+i y$ and $x-i y$. Now

$$
\begin{aligned}
x-i y & =(-i)^{v}(1+i)^{u_{1}} \prod(a-i b)^{t_{1}}(a+i b)^{t_{2}} \prod q^{r_{1}} \\
& =i^{u_{1}-v}(1-i)^{u_{1}} \prod(a+i b)^{t_{2}}(a-i b)^{t_{1}} \prod q^{r_{1}} .
\end{aligned}
$$

So we need $u_{1}=u, t_{1}+t_{2}=t, r_{1}=r$. Since there are only four distinct powers of i, the complete list is given by

$$
i^{v}(1-i)^{u} \prod(a+i b)^{t_{1}}(a-i b)^{t-t_{1}} \prod q^{r}
$$

where u, t and r are fixed, $v \in\{0,1,2,3\}$ and $t_{1} \in\{0,1, \ldots, t\}$. The total number in this list is

$$
4 \prod(t+1)=4 \tau\left(n_{1}\right)
$$

