4. Gaussian integers

We are going to use the fact that $\mathbb{Z}[i]$ is a UFD, meaning that we can factor Gaussian integers into products of Gaussian primes and this factorisation is unique, to count the number of ways to write a natural number as a sum of squares.

Recall

Definition 4.1. Let $a + bi \in \mathbb{Z}[i]$ be a Gaussian integer. The **norm** of a + bi, denoted N(a + bi), is $a^2 + b^2$.

Note that the norm of a + bi is the product of a + bi and a - bi, the **conjugate** of a + bi.

Lemma 4.2. The norm is multiplicative, that is,

$$N(\alpha\beta) = N(\alpha)N(\beta).$$

Proof. This is a restatement of (2.1).

Lemma 4.3. The units in $\mathbb{Z}[i]$ are precisely the elements of norm 1.

Proof. Suppose that $\alpha \in \mathbb{Z}[i]$ is a unit. Then we may find β such that $\alpha\beta = 1$ and so

$$1 = N(\alpha)N(\beta).$$

Thus $N(\alpha) = 1$.

The elements of norm 1 are ± 1 and $\pm i$. The inverse of ± 1 is ± 1 and the inverse of $\pm i$ is $\mp i$, so that elements of norm one are all units. \Box

Lemma 4.4. Let $p \in \mathbb{Z}$ be a prime congruent to 3 modulo 4.

Then p is a prime in $\mathbb{Z}[i]$.

Proof. Suppose that

$$p = (a + bi)(c + di).$$

Taking norms we see that

$$p^2 = (a^2 + b^2)(c^2 + d^2).$$

As $p \equiv 3 \mod 4$, p is not a sum of squares. Thus $a^2 + b^2 = p^2$ and $c^2 + d^2 = 1$, so that c + di is a unit, or vice-versa.

Lemma 4.5. Let $\alpha = a + bi$ be a Gaussian integer whose norm is a prime p.

Then α is a prime Gaussian integer.

Proof. Suppose that $\alpha = \beta \gamma$. Then

$$p = N(\beta)N(\gamma).$$

As p is prime we must have $N(\beta)$ or $N(\gamma) = 1$. But then β or γ is a unit so that α is a prime.

Definition-Theorem 4.6. Suppose that

$$n = 2^u n_1 n_2$$

where n_1 is a product over primes congruent to 1 modulo four and n_2 is a product over primes congruent to 3 modulo four. If $r_2(n)$ denotes the number of representations of n as a sum of two squares then

$$r_2(n) = \begin{cases} 0 & \text{if } n_2 \text{ is not a square} \\ 4\tau(n_1) & \text{if } n_2 \text{ is a square.} \end{cases}$$

Proof. (2.3) implies that n_2 must be a square and that all representations of n as a sum of squares are induced by a multiplying a representation of $2^u n_1$ by the square root of n_1 . We are also going to prove this directly.

Suppose that $n = x^2 + y^2$ is a sum of squares. Then

$$n = (x + iy)(x - iy),$$

is a product of two conjugate Gaussian integers and vice-versa. It follows that there is a correspondence between factorisations of n as products of two conjugate Gaussian integers and representations of n as a sum of two squares.

So we just have to count the number of ways to write n as a product of conjugate Gaussian integers. Suppose that

$$n_1 = \prod_{p_j \equiv 1 \mod 4} p_j^{t_j}$$
 and $n_2 = \prod_{q_j \equiv 3 \mod 4} q_j^{s_j}$.

By what we already proved, $s_j = 2r_j$ is even. Note that

$$2 = i(1-i)^2$$
 and $p_i = (a_i + ib_i)(a_i - ib_i)$

for some integers a_i and b_i . Thus

$$n = i^{u}(1-i)^{2u} \prod ((a+ib)(a-ib))^{t} \prod q^{2r},$$

where subscripts have been omitted for clarity and

$$a > 0,$$
 $b > 0$ and $p = a^2 + b^2$.

Using the fact that $\mathbb{Z}[i]$ is a UFD and the identification of Gaussian primes, it follows that the divisors of n have the form

$$x + iy = i^{v}(1-i)^{u_1} \prod (a+ib)^{t_1}(a-ib)^{t_2} \prod q^{r_1},$$

up to units and re-ordering, where

$$0 \le v \le 3$$
, $0 \le u_1 \le 2u$, $0 \le t_1 \le t$, $0 \le t_2 \le t$, and $0 \le r_1 \le 2r$.

We check under what conditions n is the product of x+iy and x-iy. Now

$$x - iy = (-i)^{v} (1+i)^{u_1} \prod (a-ib)^{t_1} (a+ib)^{t_2} \prod q^{r_1}$$
$$= i^{u_1-v} (1-i)^{u_1} \prod (a+ib)^{t_2} (a-ib)^{t_1} \prod q^{r_1}.$$

So we need $u_1 = u$, $t_1 + t_2 = t$, $r_1 = r$. Since there are only four distinct powers of i, the complete list is given by

$$i^{v}(1-i)^{u}\prod (a+ib)^{t_{1}}(a-ib)^{t-t_{1}}\prod q^{r},$$

where u, t and r are fixed, $v \in \{0, 1, 2, 3\}$ and $t_1 \in \{0, 1, ..., t\}$. The total number in this list is

$$4\prod(t+1)=4\tau(n_1).$$