
4. Gaussian integers

We are going to use the fact that Z[i] is a UFD, meaning that we
can factor Gaussian integers into products of Gaussian primes and this
factorisation is unique, to count the number of ways to write a natural
number as a sum of squares.

Recall

Definition 4.1. Let a+ bi ∈ Z[i] be a Gaussian integer.
The norm of a+ bi, denoted N(a+ bi), is a2 + b2.

Note that the norm of a+ bi is the product of a+ bi and a− bi, the
conjugate of a+ bi.

Lemma 4.2. The norm is multiplicative, that is,

N(αβ) = N(α)N(β).

Proof. This is a restatement of (2.1). �

Lemma 4.3. The units in Z[i] are precisely the elements of norm 1.

Proof. Suppose that α ∈ Z[i] is a unit. Then we may find β such that
αβ = 1 and so

1 = N(α)N(β).

Thus N(α) = 1.
The elements of norm 1 are ±1 and ±i. The inverse of ±1 is ±1 and

the inverse of ±i is ∓i, so that elements of norm one are all units. �

Lemma 4.4. Let p ∈ Z be a prime congruent to 3 modulo 4.
Then p is a prime in Z[i].

Proof. Suppose that
p = (a+ bi)(c+ di).

Taking norms we see that

p2 = (a2 + b2)(c2 + d2).

As p ≡ 3 mod 4, p is not a sum of squares. Thus a2 + b2 = p2 and
c2 + d2 = 1, so that c+ di is a unit, or vice-versa. �

Lemma 4.5. Let α = a + bi be a Gaussian integer whose norm is a
prime p.

Then α is a prime Gaussian integer.

Proof. Suppose that α = βγ. Then

p = N(β)N(γ).

As p is prime we must have N(β) or N(γ) = 1. But then β or γ is a
unit so that α is a prime. �

1



Definition-Theorem 4.6. Suppose that

n = 2un1n2

where n1 is a product over primes congruent to 1 modulo four and n2

is a product over primes congruent to 3 modulo four. If r2(n) denotes
the number of representations of n as a sum of two squares then

r2(n) =

{
0 if n2 is not a square

4τ(n1) if n2 is a square.

Proof. (2.3) implies that n2 must be a square and that all representa-
tions of n as a sum of squares are induced by a multiplying a repre-
sentation of 2un1 by the square root of n1. We are also going to prove
this directly.

Suppose that n = x2 + y2 is a sum of squares. Then

n = (x+ iy)(x− iy),

is a product of two conjugate Gaussian integers and vice-versa. It
follows that there is a correspondence between factorisations of n as
products of two conjugate Gaussian integers and representations of n
as a sum of two squares.

So we just have to count the number of ways to write n as a product
of conjugate Gaussian integers. Suppose that

n1 =
∏

pj≡1 mod 4

p
tj
j and n2 =

∏
qj≡3 mod 4

q
sj
j .

By what we already proved, sj = 2rj is even. Note that

2 = i(1− i)2 and pj = (aj + ibj)(aj − ibj)

for some integers aj and bj. Thus

n = iu(1− i)2u
∏

((a+ ib)(a− ib))t
∏

q2r,

where subscripts have been omitted for clarity and

a > 0, b > 0 and p = a2 + b2.

Using the fact that Z[i] is a UFD and the identification of Gaussian
primes, it follows that the divisors of n have the form

x+ iy = iv(1− i)u1

∏
(a+ ib)t1(a− ib)t2

∏
qr1 ,

up to units and re-ordering, where

0 ≤ v ≤ 3, 0 ≤ u1 ≤ 2u, 0 ≤ t1 ≤ t, 0 ≤ t2 ≤ t, and 0 ≤ r1 ≤ 2r.
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We check under what conditions n is the product of x+ iy and x− iy.
Now

x− iy = (−i)v(1 + i)u1

∏
(a− ib)t1(a+ ib)t2

∏
qr1

= iu1−v(1− i)u1

∏
(a+ ib)t2(a− ib)t1

∏
qr1 .

So we need u1 = u, t1+t2 = t, r1 = r. Since there are only four distinct
powers of i, the complete list is given by

iv(1− i)u
∏

(a+ ib)t1(a− ib)t−t1
∏

qr,

where u, t and r are fixed, v ∈ { 0, 1, 2, 3 } and t1 ∈ { 0, 1, . . . , t }. The
total number in this list is

4
∏

(t+ 1) = 4τ(n1). �
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