
3. Infinite Descent

Theorem 3.1 (Fermat). An odd prime p is the sum of two squares if
and only if p ≡ 1 mod 4.

Note that one direction is very easy, since u2 ≡ 0 or 1 mod 4, so
that the sum of two squares is never congruent to 3 modulo 4.

First we present Euler’s original argument and then a more modern
proof due to Zagier.

Lemma 3.2. If n is a sum of two squares and n = pm, and the prime
p is a sum of two squares then m is a sum of two squares.

Proof. Indeed suppose that n = a2+b2 and p = u2+v2. Then p divides

(ub− va)(ub+ va) = u2b2 − v2a2

= u2(a2 + b2)− a2(u2 + v2)

= u2n− a2p.
As p is prime, it divides one of the factors. By symmetry we may
suppose that it divides ub− va.

As
(a2 + b2)(u2 + v2) = (au+ bv)2 + (av − bu)2

and the LHS is np = mp2, it follows that p divides au + bv. As both
terms on the right are divisible by p, both terms on the RHS are divis-
ible by p2. Now divide through by p2. �

Lemma 3.3. If n = n1n2 is a sum of squares and n1 is not a sum of
squares then some factor of n2 is not a sum of squares.

Proof. Suppose that n2 = p1p2 . . . pk is the prime factorisation of n2. If
every p1, p2, . . . , pk is a sum of squares then n1 is a sum of squares by
(3.2) and induction on k. �

Proposition 3.4. If n has a primitive representation then every factor
of n is a sum of squares.

Proof. Suppose that n = a2 + b2, where (a, b) = 1.
Suppose that n1|n. We may write

a = cn1 + r and b = dn1 + s,

where 2|r| and 2|s| ≤ n1. It follows that

n = a2 + b2

= (cn1 + r)2 + (dn1 + s)2

= c2n2
1 + 2crn1 + r2 + d2n2

1 + 2dsn1 + s2

= An1 + r2 + s2.
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It follows that r2 + s2 is divisible by n1,

r2 + s2 = n1m1.

Suppose that d = (r, s). Then d is coprime to n1 as a and b are
coprime. Dividing through by d2, we may assume that (r, s) = 1. Note
that m1 ≤ n1/2 as

r2 + s2 ≤
(n1

2

)2
+
(n1

2

)2
=
n2
1

2
.

If n1 is not a sum of squares then (3.3) implies that some factor n2

of m1 is not a sum of squares. Note that n2 divides n1m1 which has
a primitive representation as a sum of squares. As n2 ≤ m1 < n1 we
can argue by descent that this is not possible. Thus n1 is a sum of
squares. �

Here is Euler’s proof

Proof of (3.1). Suppose that p = 4n+ 1. Then each of the numbers

14n 24n . . . and (4n)4n

is congruent to one, modulo p. Therefore all of the differences

24n − 14n 34n − 24n . . . and (4n)4n − (4n− 1)4n

are divisible by p. Each of these differences factors as

a4n − b4n = (a2n + b2n)(a2n − b2n).

If p divides the first factor then (3.4) implies that p is a sum of squares
(note that a and b are coprime as their difference is one).

The only remaining possibility is that it always divides the second
factor, that is, p divides 22n − 12n, 32n − 22n, . . . , (4n)2n − (4n− 1)2n.
Taking second differences, then third differences and so on, we see that
the (2n)th difference is also divisible by p. But the (2n)th differences
of any 2n successive (2n)th powers is (2n)!, which is not divisible by p,
a contradiction. �

Here is Zagier’s proof.

Proof of (3.1). Consider the set

S = { (x, y, z) ∈ N3 |x2 + 4yz = p }.
Note that S is clearly finite, as x, y and z ≤ p.

Suppose that (x, y, z) ∈ N3. It is clear that if (x, y, z) ∈ S then x is
not even, as p is not even.
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Note that if x = y − z then

x2 + 4yz = (y − z)2 + 4yz

= y2 + 2yz + z2

= (y + z)2

6= p

and so (x, y, z) /∈ S.
Let

τ : S −→ S

be the function

τ(x, y, z) =


(x+ 2z, z, y − x− z) if x < y − z
(2y − x, y, x− y + z) if y − z < x < 2y

(x− 2y, x− y + z, y) if x > 2y.

By what we have just proved the recipe for τ gives a well-defined func-
tion to N3. We check that the image lies in S. Let (a, b, c) = τ(x, y, z).
It is not hard to see that all three coordinates a, b and c are natu-
ral numbers. We have to also check that (a, b, c) is a solution to the
equation. There are three cases:

a2 + 4bc = (x+ 2z)2 + 4z(y − x− z)

= x2 + 4xz + 4z2 + 4yz +−4zx− 4z2

= x2 + 4yz

= p,

so that (a, b, c) ∈ S. The second case is almost the same as the first;
just switch y and z and flip the sign of x. For the third case, note that
a2 and 4bc are the same as for the second case. Thus τ(x, y, z) ∈ S and
so τ is a well-defined map.

We check that τ is an involution, that is, it is its own inverse, that
is, τ 2 is the identity. There are three cases. If x < y − z then a > 2b
and so

τ 2(x, y, z) = τ(a, b, c)

= (a− 2b, a− b+ c, b)

= (x+ 2z − 2z, x+ 2z − z + (y − x− z), z)

= (x, y, z).
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If y − z < x < 2y then b− c < a < 2b and so

τ 2(x, y, z) = τ(a, b, c)

= (2b− a, b, a− b+ c)

= (2y − (2y − x), y, (2y − x)− y + (x− y + z))

= (x, y, z).

Finally, if x > 2y then a < b− c and so

τ 2(x, y, z) = τ(a, b, c)

= (a+ 2c, c, b− a− c)
= (x− 2y + 2y, y, x− y + z − (x− 2y)− y)

= (x, y, z).

We look for fixed points, points such that (a, b, c) = (x, y, z). By the
above, we must have y − z < x < 2y, in which case

x = 2y − x y = y and z = x− y + z.

Thus x = y. We then have

p = x2 + 4xz,

so that x = 1 and this determines z. On the other hand, as p = 4n+ 1,
(1, 1, n) is a fixed point, so that it is the unique fixed point.

It follows that |S| is odd, since every point is matched with another
point, except for the fixed point.

Now consider the function

σ : S −→ S

given by
σ(x, y, z) = (x, z, y).

σ is clearly an involution of S. As |S| is odd it follows that σ has at
least one fixed point. In this case y = z so that

p = x2 + 4y2,

is a sum of squares. �
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