3. Infinite Descent

Theorem 3.1 (Fermat). An odd prime p is the sum of two squares if and only if $p \equiv 1 \bmod 4$.

Note that one direction is very easy, since $u^{2} \equiv 0$ or $1 \bmod 4$, so that the sum of two squares is never congruent to 3 modulo 4 .

First we present Euler's original argument and then a more modern proof due to Zagier.
Lemma 3.2. If n is a sum of two squares and $n=p m$, and the prime p is a sum of two squares then m is a sum of two squares.

Proof. Indeed suppose that $n=a^{2}+b^{2}$ and $p=u^{2}+v^{2}$. Then p divides

$$
\begin{aligned}
(u b-v a)(u b+v a) & =u^{2} b^{2}-v^{2} a^{2} \\
& =u^{2}\left(a^{2}+b^{2}\right)-a^{2}\left(u^{2}+v^{2}\right) \\
& =u^{2} n-a^{2} p .
\end{aligned}
$$

As p is prime, it divides one of the factors. By symmetry we may suppose that it divides $u b-v a$.

As

$$
\left(a^{2}+b^{2}\right)\left(u^{2}+v^{2}\right)=(a u+b v)^{2}+(a v-b u)^{2}
$$

and the LHS is $n p=m p^{2}$, it follows that p divides $a u+b v$. As both terms on the right are divisible by p, both terms on the RHS are divisible by p^{2}. Now divide through by p^{2}.
Lemma 3.3. If $n=n_{1} n_{2}$ is a sum of squares and n_{1} is not a sum of squares then some factor of n_{2} is not a sum of squares.
Proof. Suppose that $n_{2}=p_{1} p_{2} \ldots p_{k}$ is the prime factorisation of n_{2}. If every $p_{1}, p_{2}, \ldots, p_{k}$ is a sum of squares then n_{1} is a sum of squares by (3.2) and induction on k.

Proposition 3.4. If n has a primitive representation then every factor of n is a sum of squares.
Proof. Suppose that $n=a^{2}+b^{2}$, where $(a, b)=1$.
Suppose that $n_{1} \mid n$. We may write

$$
a=c n_{1}+r \quad \text { and } \quad b=d n_{1}+s,
$$

where $2|r|$ and $2|s| \leq n_{1}$. It follows that

$$
\begin{aligned}
n & =a^{2}+b^{2} \\
& =\left(c n_{1}+r\right)^{2}+\left(d n_{1}+s\right)^{2} \\
& =c^{2} n_{1}^{2}+2 c r n_{1}+r^{2}+d^{2} n_{1}^{2}+2 d s n_{1}+s^{2} \\
& =A n_{1}+r^{2}+s^{2} .
\end{aligned}
$$

It follows that $r^{2}+s^{2}$ is divisible by n_{1},

$$
r^{2}+s^{2}=n_{1} m_{1} .
$$

Suppose that $d=(r, s)$. Then d is coprime to n_{1} as a and b are coprime. Dividing through by d^{2}, we may assume that $(r, s)=1$. Note that $m_{1} \leq n_{1} / 2$ as

$$
\begin{aligned}
r^{2}+s^{2} & \leq\left(\frac{n_{1}}{2}\right)^{2}+\left(\frac{n_{1}}{2}\right)^{2} \\
& =\frac{n_{1}^{2}}{2}
\end{aligned}
$$

If n_{1} is not a sum of squares then (3.3) implies that some factor n_{2} of m_{1} is not a sum of squares. Note that n_{2} divides $n_{1} m_{1}$ which has a primitive representation as a sum of squares. As $n_{2} \leq m_{1}<n_{1}$ we can argue by descent that this is not possible. Thus n_{1} is a sum of squares.

Here is Euler's proof
Proof of (3.1). Suppose that $p=4 n+1$. Then each of the numbers

$$
1^{4 n} \quad 2^{4 n} \quad \ldots \quad \text { and } \quad(4 n)^{4 n}
$$

is congruent to one, modulo p. Therefore all of the differences

$$
2^{4 n}-1^{4 n} \quad 3^{4 n}-2^{4 n} \quad \cdots \quad \text { and } \quad(4 n)^{4 n}-(4 n-1)^{4 n}
$$

are divisible by p. Each of these differences factors as

$$
a^{4 n}-b^{4 n}=\left(a^{2 n}+b^{2 n}\right)\left(a^{2 n}-b^{2 n}\right) .
$$

If p divides the first factor then (3.4) implies that p is a sum of squares (note that a and b are coprime as their difference is one).

The only remaining possibility is that it always divides the second factor, that is, p divides $2^{2 n}-1^{2 n}, 3^{2 n}-2^{2 n}, \ldots,(4 n)^{2 n}-(4 n-1)^{2 n}$. Taking second differences, then third differences and so on, we see that the $(2 n)$ th difference is also divisible by p. But the $(2 n)$ th differences of any $2 n$ successive $(2 n)$ th powers is $(2 n)$!, which is not divisible by p, a contradiction.

Here is Zagier's proof.
Proof of (3.1). Consider the set

$$
S=\left\{(x, y, z) \in \mathbb{N}^{3} \mid x^{2}+4 y z=p\right\} .
$$

Note that S is clearly finite, as x, y and $z \leq p$.
Suppose that $(x, y, z) \in \mathbb{N}^{3}$. It is clear that if $(x, y, z) \in S$ then x is not even, as p is not even.

Note that if $x=y-z$ then

$$
\begin{aligned}
x^{2}+4 y z & =(y-z)^{2}+4 y z \\
& =y^{2}+2 y z+z^{2} \\
& =(y+z)^{2} \\
& \neq p
\end{aligned}
$$

and so $(x, y, z) \notin S$.
Let

$$
\tau: S \longrightarrow S
$$

be the function

$$
\tau(x, y, z)= \begin{cases}(x+2 z, z, y-x-z) & \text { if } x<y-z \\ (2 y-x, y, x-y+z) & \text { if } y-z<x<2 y \\ (x-2 y, x-y+z, y) & \text { if } x>2 y\end{cases}
$$

By what we have just proved the recipe for τ gives a well-defined function to \mathbb{N}^{3}. We check that the image lies in S. Let $(a, b, c)=\tau(x, y, z)$. It is not hard to see that all three coordinates a, b and c are natural numbers. We have to also check that (a, b, c) is a solution to the equation. There are three cases:

$$
\begin{aligned}
a^{2}+4 b c & =(x+2 z)^{2}+4 z(y-x-z) \\
& =x^{2}+4 x z+4 z^{2}+4 y z+-4 z x-4 z^{2} \\
& =x^{2}+4 y z \\
& =p,
\end{aligned}
$$

so that $(a, b, c) \in S$. The second case is almost the same as the first; just switch y and z and flip the sign of x. For the third case, note that a^{2} and $4 b c$ are the same as for the second case. Thus $\tau(x, y, z) \in S$ and so τ is a well-defined map.

We check that τ is an involution, that is, it is its own inverse, that is, τ^{2} is the identity. There are three cases. If $x<y-z$ then $a>2 b$ and so

$$
\begin{aligned}
\tau^{2}(x, y, z) & =\tau(a, b, c) \\
& =(a-2 b, a-b+c, b) \\
& =(x+2 z-2 z, x+2 z-z+(y-x-z), z) \\
& =(x, y, z) .
\end{aligned}
$$

If $y-z<x<2 y$ then $b-c<a<2 b$ and so

$$
\begin{aligned}
\tau^{2}(x, y, z) & =\tau(a, b, c) \\
& =(2 b-a, b, a-b+c) \\
& =(2 y-(2 y-x), y,(2 y-x)-y+(x-y+z)) \\
& =(x, y, z)
\end{aligned}
$$

Finally, if $x>2 y$ then $a<b-c$ and so

$$
\begin{aligned}
\tau^{2}(x, y, z) & =\tau(a, b, c) \\
& =(a+2 c, c, b-a-c) \\
& =(x-2 y+2 y, y, x-y+z-(x-2 y)-y) \\
& =(x, y, z) .
\end{aligned}
$$

We look for fixed points, points such that $(a, b, c)=(x, y, z)$. By the above, we must have $y-z<x<2 y$, in which case

$$
x=2 y-x \quad y=y \quad \text { and } \quad z=x-y+z
$$

Thus $x=y$. We then have

$$
p=x^{2}+4 x z
$$

so that $x=1$ and this determines z. On the other hand, as $p=4 n+1$, $(1,1, n)$ is a fixed point, so that it is the unique fixed point.

It follows that $|S|$ is odd, since every point is matched with another point, except for the fixed point.

Now consider the function

$$
\sigma: S \longrightarrow S
$$

given by

$$
\sigma(x, y, z)=(x, z, y)
$$

σ is clearly an involution of S. As $|S|$ is odd it follows that σ has at least one fixed point. In this case $y=z$ so that

$$
p=x^{2}+4 y^{2}
$$

is a sum of squares.

