21. Transcendence of e

Theorem 21.1. e is transcendental.
Lemma 21.2. If $p(x) \in \mathbb{Z}[x]$ is a polynomial with integer coefficients then

$$
\int_{0}^{\infty} x^{m} p(x) e^{-x} \mathrm{~d} x \equiv p(0) m!\quad \bmod (m+1)!
$$

In particular, if $(m+1)$ does not divide the constant term $p(0)$ then

$$
\int_{0}^{\infty} x^{m} p(x) e^{-x} \mathrm{~d} x \neq 0
$$

Proof. If $k \in \mathbb{N}$ then

$$
\begin{aligned}
I_{k} & =\int_{0}^{\infty} x^{k} e^{-x} \mathrm{~d} x \\
& =\left[-x^{k} e^{-x}\right]_{0}^{\infty}+k \int_{0}^{\infty} x^{k-1} e^{-x} \mathrm{~d} x \\
& =k \int_{0}^{\infty} x^{k-1} e^{-x} \mathrm{~d} x \\
& =k I_{k-1} \\
& =k!I_{0} \\
& =k!.
\end{aligned}
$$

As k ! divides $(k+1)$! it follows that

$$
\int_{0}^{\infty} x^{m} p(x) e^{-x} \mathrm{~d} x \equiv p(0) m!\quad \bmod (m+1)!
$$

Proof of 21.1. Suppose not, suppose that e is algebraic. Then we can find integers $a_{0}, a_{1}, a_{2}, \ldots, a_{n}, a_{0} \neq 0$ such that

$$
a_{n} e^{n}+a_{n-1} e^{n-1}+\cdots+a_{1} e+a_{0}=0
$$

Let r be a natural number, which we will fix later, and let

$$
I_{b}^{c}=\int_{b}^{c} x^{r}[(x-1)(x-2) \ldots(x-n)]^{r+1} e^{-x} \mathrm{~d} x
$$

where $0 \leq b<c \leq \infty$. Suppose we multiply the relation above by I_{0}^{∞} and split the result into two parts

$$
P_{1}+P_{2}=0,
$$

where

$$
\begin{aligned}
& P_{1}=a_{0} I_{0}^{\infty}+a_{1} e I_{1}^{\infty}+\cdots+a_{n} e^{n} I_{n}^{\infty} \\
& P_{2}= \\
& a_{1} e I_{0}^{1}+\cdots+a_{n} e^{n} I_{0}^{n} .
\end{aligned}
$$

We will show that P_{1} / r ! is a nonzero integer while

$$
\left|\frac{P_{2}}{r!}\right|<1
$$

for an appropriate choice of r.
Making the change of variable $y=x-k$, we obtain

$$
\begin{aligned}
a_{k} e^{k} I_{k}^{\infty} & =a_{k} \int_{k}^{\infty} x^{r}[(x-1)(x-2) \ldots(x-n)]^{r+1} e^{-(x-k)} \mathrm{d} x \\
& =a_{k} \int_{0}^{\infty}(y+k)^{r}[(y+k-1)(y+k-2) \ldots(y+k-n)]^{r+1} e^{-y} \mathrm{~d} y \\
& = \begin{cases}a_{0} \int_{0}^{\infty} y^{r} p_{0}(y) e^{-y} \mathrm{~d} y & \text { for } k=0 \\
a_{k} \int_{0}^{\infty} y^{r+1} p_{k}(y) e^{-y} \mathrm{~d} y & \text { for } 0<k \leq n,\end{cases}
\end{aligned}
$$

for certain polynomials $p_{i}(y) \in \mathbb{Z}[y]$.
(21.2) implies that every term in P_{1} is an integer and all but the first is divisible by $(r+1)$!. It follows that

$$
\begin{aligned}
P_{1} & \equiv a_{0} p_{0}(0) r! \\
& \equiv a_{0}(-1)^{n(r+1)}(n!)^{r+1} r!\quad \bmod (r+1)!
\end{aligned}
$$

Therefore, if

$$
\left(r+1, a_{0} n!\right)=1
$$

then P_{1} is a nonzero multiple of r !.
Now we turn to the problem of bounding $\left|P_{2}\right|$. Let

$$
\begin{aligned}
M & =\max _{0 \leq x \leq n}|x(x-1) \ldots(x-n)| \\
N & =\max _{0 \leq x \leq n}\left|(x-1) \ldots(x-n) e^{-x}\right| .
\end{aligned}
$$

Then for $1 \leq k \leq n$

$$
\begin{aligned}
\left|a_{k} k I_{k}^{\infty}\right| & \leq\left|a_{k}\right| \int_{0}^{k} M^{r} N \mathrm{~d} x \\
& =k\left|a_{k}\right| M^{r} N
\end{aligned}
$$

so that

$$
\left|P_{2}\right| \leq\left(\left|a_{1}\right| e+2\left|a_{2}\right| e^{2}+\cdots+n\left|a_{n}\right| e^{n}\right) M^{r} N
$$

If we fix M then $M^{r}=o(r!)$ and so $\left|P_{2}\right|<r$! for all sufficiently large r. Pick one such r such that

$$
\left(r+1, a_{0} n!\right)=1
$$

