## 20. Pell equation Revisited

Theorem 20.1. If $N$ is an integer and $d$ is a natural number such thar $|N|<\sqrt{d}$ and $d$ is not a square, then for all positive solutions of the Pell equation

$$
x^{2}-d y^{2}=N
$$

$x / y$ is a convergent of the continued fraction expansion of $\sqrt{d}$.
Proof. If $N$ is positive then

$$
\begin{aligned}
0 & <x-y \sqrt{d} \\
& =\frac{N}{x+y \sqrt{d}} \\
& <\frac{\sqrt{d}}{x+y \sqrt{d}} \\
& =\frac{1}{(x / \sqrt{d})+y} \\
& =\frac{1}{y(x / y \sqrt{d}+1)} .
\end{aligned}
$$

Since $x / y>\sqrt{d}$, we have

$$
\left|\sqrt{d}-\frac{x}{y}\right|<\frac{1}{2 y^{2}} .
$$

It follows that $x / y$ is a convergent of the continued expansion of $\sqrt{d}$.
Now suppose that $N$ is negative. Using the equation

$$
y^{2}-\frac{x^{2}}{d}=-\frac{N}{d}
$$

we have

$$
\begin{aligned}
0 & <y-\frac{x}{\sqrt{d}} \\
& =\frac{-N / d}{y+x / \sqrt{d}} \\
& <\frac{1}{x+y \sqrt{d}} \\
& =\frac{1}{x(1+y \sqrt{d} / x)} .
\end{aligned}
$$

Therefore

$$
\left|\frac{1}{\sqrt{d}}-\frac{y}{x}\right|<\frac{1}{2 x^{2}}
$$

It follows that $y / x$ is a convergent of the continued expansion of $1 / \sqrt{d}$. If

$$
\sqrt{d}=\left[a_{0} ; a_{1}, a_{2}, \ldots\right] \quad \text { then } \quad 1 / \sqrt{d}=\left[0 ; a_{0}, a_{1}, a_{2}, \ldots\right] .
$$

Thus the convergents of $1 / \sqrt{d}$ are $0 / 1$ and the reciprocals of the convergents of $\sqrt{d}$.

Using continued fractions to find solutions of Pell's equation is particularly efficient as:
Proposition 20.2. The sequence

$$
p_{k}^{2}-d q_{k}^{2}
$$

is eventually periodic, where $p_{k} / q_{k}$ are the convergents of $\xi=\sqrt{d}$.
Proof. We have

$$
\sqrt{d}=\frac{p_{k-1} \xi_{k}+p_{k-2}}{q_{k-1} \xi_{k}+q_{k-2}}
$$

Solving for $\xi_{k}$, we can write

$$
\xi_{k}=\frac{\sqrt{d}+r_{k}}{s_{k}}
$$

for rational numbers $r_{k}$ and $s_{k}$. Substituting back into the previous equation and replacing the index $k$ by the index $k+1$ we get

$$
\sqrt{d}=\frac{p_{k}\left(\sqrt{d}+r_{k+1}\right)+p_{k-1} s_{k+1}}{q_{k}\left(\sqrt{d}+r_{k+1}\right)+q_{k-1} s_{k+1}}
$$

so that

$$
\left(q_{k} r_{k+1}+q_{k-1} s_{k+1}-p_{k}\right) \sqrt{d}-\left(p_{k-1} s_{k+1}+p_{k} r_{k+1}-q_{k} d\right)=0
$$

Both the rational and the irrational parts must be equal to zero. Therefore

$$
\begin{aligned}
q_{k} r_{k+1}+q_{k-1} s_{k+1} & =p_{k} \\
p_{k} r_{k+1}+p_{k-1} s_{k+1} & =q_{k} d .
\end{aligned}
$$

Viewing $r_{k+1}$ and $s_{k+1}$ as unknowns, the determinant of the coefficient matrix is

$$
q_{k} p_{k-1}-q_{k-1} p_{k}=(-1)^{k}
$$

It follows that

$$
\begin{aligned}
r_{k+1} & =(-1)^{k}\left(p_{k} p_{k-1}-q_{k} q_{k-1} d\right) \\
s_{k+1} & =(-1)^{k}\left(q_{k}^{2} d-p_{k}^{2}\right) .
\end{aligned}
$$

As the numbers $r_{k}$ and $s_{k}$ are determined by $\xi_{k}$, and $\xi_{k}$ is eventually periodic, it follows that $r_{k}$ and $s_{k}$ are eventually periodic.

This gives us an effective method to find the solutions of Pell's equation. The first time we find a convergent which is a solution of $x^{2}-d y^{2}=1$, we must have found the fundamental solution, since this will have the smallest numerator and denominator. If $x^{2}-d y^{2}=-1$ has a solution, then we will see this solution before the second period (we need to go the second period, due to the factor $(-1)^{k}$.

For example, consider

$$
x^{2}-21 y^{2}=N
$$

We have to write down the continued fraction expansion of $\sqrt{21}$.

