
2. Sums of squares

We consider the question of when we can write an integer n as a sum
of two squares, that is, we consider for which integers n we can solve
the equation

x2 + y2 = n,

where x and y are integers.
This question will be relatively easy to solve, due to the following

identity:

Lemma 2.1. If a, b, c and d are reals then

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2.

In particular the set of integers which are the sum of two squares is
closed under multiplication.

Proof. Of course we can check this formally (so that it holds over any
commutative ring). But we can also use complex numbers

(a2 + b2)(c2 + d2) = (a+ bi)(a− bi)(c+ di)(c− di)
= (a+ bi)(c+ di)(a− bi)(c− di)
= [ac− bd+ i(bc+ ad)][ac− bd− i(bc+ ad)]

= (ac− bd)2 + (ad+ bc)2. �

Definition 2.2. We say that a solution (u, v) to

x2 + y2 = n,

is primitive if (u, v) = 1.

Proposition 2.3. If n has a primitive representation then −1 is a
quadratic residue of n.

In particular if p ≡ 3 mod 4 and p|n then and n is a sum of squares
then n = p2km where m is coprime to p and if x2 + y2 = n then we
may write x = pkx′ and y = pky′.

Proof. Let

u2 + v2 = n

be a primitive representation and let p be a prime divisor of n. Then
p does not divide u and so we may find w such that wu ≡ 1 mod p.
Multiplying the equation above by w2 and reducing modulo p we get

1 + (wv)2 ≡ 0 mod p.

Thus −1 is a quadratic residue of p.
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Suppose that p is odd. If we apply Newton-Raphson approximation
to the function f(x) = x2, see lecture 12 from Math 104A, it follows
that −1 is a quadratic residue of pe for any natural number e.

If p is even then note that both u and v are odd. In this case u2 ≡ 1
mod 4 so that n ≡ 2 mod 4. But then n is not divisible by 4.

Now we may apply the Chinese remainder theorem to conclude that
−1 is a quadratic residue of n.

Now suppose that p ≡ 3 mod 4. Then −1 is not a quadratic residue
modulo p and so no integer divisible by p has a primitive representation.
Suppose that n = phm where m is coprime to p. Suppose that

u2 + v2 = n

and let d = (u, v). Then we may write u = du1 and v = dv1 and d2|n
so that n = d2N , N ∈ Z. It follows that

u21 + v21 = N

where (u1, v1) = 1. By what we already proved N is coprime to p.
Thus if d = pke, where e is coprime to d, then h = 2k. �

Proposition 2.4. Let n > 1 be a natural number of which −1 is a
quadratic residue. Then to each solution u of

u2 ≡ −1 mod n,

there corresponds a unique pair of integers x and y such that

n = x2 + y2, x > 0, y > 0, (x, y) = 1 and y ≡ ux mod n,

and vice-versa.

Proof. Suppose we are given u. By (1.2), applied to λ =
√
n and a = u,

we may find r and s such that

us ≡ r mod n 0 < s <
√
n and |r| ≤

√
n.

If r > 0 then let x = s and y = r. If r < 0 then note that s ≡ −ur
mod n and let x = −r and y = s. Either way,

x2+y2 ≡ 0 mod n 0 < x ≤
√
n, 0 < y ≤

√
n, and y ≡ ux mod n

and at most one of x and y is equal to
√
n. Hence

0 < x2 + y2 = tn

< 2n.

It follows that

x2 + y2 = n.
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By assumption there are integers k and l such that u2 + 1 = kn and
y = ux+ ln. We have

n = x2 + y2

= x2 + (ux+ ln)y

= x2 + ux(ux+ ln) + lny

= x2(1 + u2) + uxln+ lny

= xn(kx+ ul) + lny,

so that x(kx+ ul) + ly = 1. It follows that (x, y) = 1 and so

n = x2 + y2, x > 0, y > 0, (x, y) = 1 and y ≡ ux mod n.

This establishes existence.
Now suppose that

n = X2+Y 2, X > 0, Y > 0, (X, Y ) = 1 and Y ≡ uX mod n.

We have

n2 = (x2 + y2)(X2 + Y 2)

= (xX + yY )2 + (xY −Xy)2.

It follows that 0 < xX + yY ≤ n. But we have

xX + yY ≡ xX + u2xX

≡ 0 mod n.

Therefore xX + yY = n and so xY −Xy = 0. As (x, y) = (X, Y ) = 1
it follows that x = X and y = Y . This establishes uniqueness.

Now suppose that we have integers x and y such that

n = x2 + y2, x > 0, y > 0, (x, y) = 1 and y ≡ ux mod n.

As (x, n) = 1 the last condition uniquely determines u. As

0 ≡ x2 + y2

≡ x2(1 + u2) mod n,

we must have
u2 ≡ −1 mod n. �

Definition-Theorem 2.5. The number p2(n) of primitive represen-
tations of n > 1 as a sum of two squares is four times the number of
solutions of the congruence u2 ≡ −1 mod n:

p2(n) =

{
0 if 4|n or some prime p ≡ 3 mod 4 divides n.

4 · 2s if 4 6 |n, no prime p ≡ 3 mod 4 divides n,

where s is the number of odd prime divisors of n.
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Proof. If x2 + y2 = n and (x, y) = 1 then xy 6= 0. Note that (±x,±y)
gives four different representations, of which one satisfies the properties
of (2.4). �

Corollary 2.6. A prime p 6≡ 3 mod 4 can be uniquely represented, up
to order and sign, as a sum of two squares.

Conversely, suppose that N is odd. If N has a unique representation,
up to order and sign, and this representation is primitive, then N is
prime.

If N has only one primitive representation then N is a power of a
prime congruent to one modulo 4.

Proof. If p = 2 then p2(2) = 4 and the four different representations
(±1)2 +(±1)2 are the same up to sign. If p ≡ 1 mod 4 then p2(p) = 8.
If a2 + b2 = p then (a, b) = 1. As p > 2 it follows that a 6= b and so the
eight different primitive representations (±a)2+(±b)2 and (±b)2+(±a)2

are the same up to sign and order.
Now suppose N is odd. If N has a unique primitive representation,

up to order and sign, then s = 1, so that N is a power pe of a prime
p ≡ 1 mod 4.

Suppose e > 1. If e = 2 then p2 + 02 gives one representation and
multiplying a representation of p with itself gives another representa-
tion. If e > 2 then multiplying representations of lower powers gives
more than one representation. �
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