
19. Quadratic irrationalities

Even though in theory continued fractions completely answer the
question of finding best approximations, in practice it is not so easy
to spot patterns in the continued fraction expansion of a real number.
There are some interesting exceptions.

It is possible to show that

2.7182 < e < 2.7183.

One can easily compute

2.7182 = [2; 1, 2, 1, 1, 4, 1, 1, 1, 3, 1, 9].

and

2.7183 = [2; 1, 2, 1, 1, 4, 1, 1, 19, 1, 1, 3].

It follows that

e = [2; 1, 2, 1, 1, 4, 1, 1, . . . ].

It is in fact known that the continued fraction expansion of e has the
pattern

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, . . . , 1, 2n, 1, . . . ].

There is one simple case where it is possible to calculate the continued
fraction expansion. For example, suppose

ξ = [4; 3, 1, 2, 1, 2] = [4; 3, 1, 2].

Note that

ξ = [4; 3, ξ2] where ξ2 = τ = [1; 2].

Note that

τ = 1 +
1

2 + 1/τ

= 1 +
τ

2τ + 1

=
3τ + 1

2τ + 1
.

It follows that

2τ 2 − 2τ − 1 = 0.

It follows that

τ =
1 +
√

3

2
.
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From there we can figure out ξ. We have

ξ = 4 +
1

3 +
1
√
3+2
2

= 4 +
1

3 +
2

√
3 + 1

= 4 +
1

3
√
3+5√
3+1

= 4 +

√
3 + 1

3
√

3 + 5

=
13
√

3 + 21

3
√

3 + 5

=
(13
√

3 + 21)(3
√

3− 5)

2

= 6−
√

3.

We have already seen examples of how square roots gives rise to
eventually periodic continued fractions. We say a real α is a quadratic
irrational if α has degree two over Q.

Theorem 19.1. ξ is a quadratic irrational if and only if its continued
fraction expansion is eventually periodic.

Proof. Suppose that the continued fraction expansion of ξ is eventually
periodic,

ξ = [a0; a1, a2, . . . ]

= [a0; a1, a2, . . . , an−1, an, an+1, . . . an+h−1]

= [a0; a1, a2, . . . , an−1, ξn],

where ξn = ξn+h. Then

ξ =
pn−1ξn + pn−2
qn−1ξn + qn−2

=
pn+h−1ξn + pn+h−2

qn+h−1ξn + qn+h−2
.

Solving for ξn gives a quadratic equation for ξn with rational coeffi-
cients,

Aξ2n +Bξn + C = 0.
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If we substitute

ξn =
−qn−2ξ + pn−2
qn−1ξ − pn−1

into this equation, expand and clear denominators, this gives us a qua-
dratic equation with rational coefficients for ξ. Thus ξ has degree at
most two. As ξ is not rational it has degree two, that is, ξ is a quadratic
irrational.

Now suppose that ξ is a quadratic irrational so that ξ is irrational
and satisfies a quadratic equation

Aξ2 +Bξ + C = 0,

with integer coefficients. Subsituting and clearing denominators gives:

A(pk−1ξk+pk−2)
2+B(pk−1ξk+pk−2)(qk−1ξk+qk−2)+C(qk−1ξk+qk−2)

2 = 0.

Multiplying out gives

Akξ
2
k +Bkξk + Ck = 0,

where

Ak = Ap2k−1 +Bpk−1qk−1 + Cq2k−1

Bk = 2Apk−1pk−2 +B(pk−1qk−2 + pk−2qk−1) + Cqk−1qk−2

Ck = Ap2k−2 +Bpk−2qk−2 + Cq2k−2.

If f(x) = Ax2 +Bx+ C then

Ak = q2k−1f

(
pk−1
qk−1

)
and Ck = q2k−2f

(
pk−2
qk−2

)
By Taylor’s theorem

Ak = q2k−1

[
f(ξ) + f ′(ξ)

(
pk−1
qk−1

− ξ
)

+
1

2
f ′′(ξ)

(
pk−1
qk−1

− ξ
)2
]
.

As ∣∣∣∣ξ − pk−1
qk−1

∣∣∣∣ < 1

q2k−1
,

it follows that Ak is bounded. Similarly Ck is bounded. Now we check
Bk is bounded.

We use the fact that the discriminant

B2
k − 4AkCk = D

is independent of k. One can either check this directly or use the fact
that the quadratic form

Aku
2 +Bkuv + Ckv

2
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is obtained from the quadratic form

Ax2 +Bxy + Cy2

by the linear transformation

x = pk−1u+ pk−2v

y = qk−1u+ qk−2v.

As the determinant of this linear transformation is ±1 this implies
that the discriminant is unchanged.

Since
B2

k = D + 4AkCk,

where D is unchanged and Ak and Ck are bounded, it follows that Bk

is bounded.
As all three of Ak and Bk and Ck are bounded, it follows that there

are only finitely many different triples. As there are infinitely many
possible choices of k, the pigeonhole principle implies that there are
three indices n1, n2 and n3 such that ξn1 , ξn2 , and ξn3 all satisfy the
same quadratic equation. Since one quadratic equation has at most
two roots, possibly relabelling, we must have ξn1 = ξn2 , where n1 < n2.
It follows that the continued fraction expansion of ξ is periodic starting
at k = n1 with period h = n2 − n1. �

Definition 19.2. We say that the quadratic irrational ξ is reduced if
ξ > 1 and its conjugate −1 < ξ̄ < 0.

Theorem 19.3. A quadratic irrational ξ is reduced if and only if

ξ = [a0; a1, a2, . . . , ah−1].

Proof. Suppose that

ξ = [a0; a1, a2, . . . , al−1, al, al+1, . . . , al+h]

= [a0; a1, a2, . . . , al−1, ξl],

where ξl = ξl+h. We assume that l is the smallest index with this
property. Our goal is to characterise when l = 0.

By assumption

ξk = ak +
1

ξk+1

and ak = xξky.

Taking conjugates, we get

− 1

ξ̄k+1

= ak − ξ̄k.

Let
ηk = (−ξ̄k)−1.
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Then ξ is reduced if and only if ξ0 > 1 and η0 > 1. Note that

ηk+1 = ak +
1

ηk
.

Suppose that ξ is reduced. As η0 > 1 it follows that ηk > 1 so that

ak = xηk+1y.

Suppose that l > 0. Then ηl+h = ηl and so al+h−1 = al−1. It follows
that ηl+h−1 = ηl−1 so that ξl+h−1 = ξl−1, which contradicts minimality
of l. Therefore, l = 0 if ξ is reduced.

Now suppose that l = 0. It follows that a0 > 0 as ah > 0. Thus
ξ > 1 and ξ = ξh. We have

η = ηh

= [ah−1; ηh−1]

...

= [ah−1; ah−2, . . . , a1, a0, η]

= [ah−1; ah−2, . . . , a1, a0]

> 1,

and so ξ is reduced. �

Corollary 19.4. Suppose that r > 1 is a rational number, not the
square of a rational number.

Then
√
r = [a0; a1, a2, . . . , ah−1, 2a0],

where a1, a2, . . . , ah−1 has central symmetry: a1 = ah−1, a2 = ah−2, . . . .

Proof. Let ξ =
√
r + x

√
ry. Then ξ > 1 and

−1 < ξ̄ = x
√
ry−

√
r < 0,

so that ξ is reduced.
On the other hand,

η = (−ξ̄)−1

= (
√
r − x

√
ry)−1

= ξ1.

This implies that if

ξ = [b0; b1, b2, . . . , bh]
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then the sequence b0, b1, b2, . . . , bh has central symmetry. On the other
hand

xξy = x
√
ry+ x

√
ry

= 2x
√
ry,

so that b0 = 2a0 and otherwise bi = ai. �
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