18. Infinite Continued fractions

Suppose $x=\xi$ is an irrational number. Then we have an infinite continued fraction expansion for ξ,

$$
\xi=\left[\lambda_{0} ; \lambda_{1}, \lambda_{2}, \ldots\right] .
$$

Note that

$$
\frac{p_{k}}{q_{k}}=\left[\lambda_{0} ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right]
$$

are best approximations of ξ so that

$$
\begin{aligned}
\xi & =\lim _{k \rightarrow \infty} \frac{p_{k}}{q_{k}} \\
& =\lim _{k \rightarrow \infty}\left[\lambda_{0} ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right] .
\end{aligned}
$$

Now we check we can reverse all of this.
Suppose we start with an arbitrary continued fraction

$$
\left[a_{0} ; a_{1}, a_{2}, \ldots\right] .
$$

Consider the congergents:

$$
\frac{p_{0}}{q_{0}}=a_{0}, \quad \frac{p_{1}}{q_{1}}=\left[a_{0} ; a_{1}\right], \quad \frac{p_{2}}{q_{2}}=\left[a_{0} ; a_{1}, a_{2}\right], \ldots
$$

Pick $n>2$. Then the numbers above for $k \leq n-1$ are the convergents of

$$
\frac{p_{n}}{q_{n}}=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right] .
$$

It follows that

$$
\frac{p_{2 k-2}}{q_{2 k-2}}<\frac{p_{2 k}}{q_{2 k}} \quad \text { and } \quad \frac{p_{2 k-1}}{q_{2 k-1}}>\frac{p_{2 k+1}}{q_{2 k+1}}
$$

so that

$$
\frac{p_{0}}{q_{0}}<\frac{p_{1}}{q_{1}}<\frac{p_{2}}{q_{2}}<\ldots, \quad \text { and } \quad \frac{p_{1}}{q_{1}}>\frac{p_{3}}{q_{3}}>\frac{p_{5}}{q_{5}}>\ldots
$$

On the other hand,

$$
\frac{p_{2 k}}{q_{2 k}}<\frac{p_{2 k+1}}{q_{2 k+1}} .
$$

In particular the sequence of even convergents is monotonic increasing and bounded above by any of the odd convergents; similarly the odd convergents are monotonic decreasing and bounded below by any of the even convergents. It follows that the even and odd convergents both tend to a limit; we check they tend to the same limit.

We have

$$
\frac{p_{k-1}}{q_{k-1}}-\frac{p_{k}}{q_{k}}=\frac{(-1)^{k}}{q_{k-1} q_{k}}
$$

As the q_{1}, q_{2}, \ldots is strictly increasing the RHS tends to zero and the convergents tend to the same limit ξ.

Let's try all of this out with $\xi=\sqrt{11} . \sqrt{11}=3+(\sqrt{11}-3)$, so that $a_{0}=3$ and $\xi_{1}=(\sqrt{11}-3)^{-1}$.

$$
\begin{aligned}
\frac{1}{\sqrt{11}-3} & =\frac{\sqrt{11}+3}{2} \\
& =3+\frac{\sqrt{11}-3}{2}
\end{aligned}
$$

so that $a_{1}=3$ and

$$
\xi_{2}=\left(\frac{\sqrt{11}-3}{2}\right)^{-1}
$$

We have

$$
\begin{aligned}
\frac{2}{\sqrt{11}-3} & =\sqrt{11}+3 \\
& =6+\sqrt{11}-3
\end{aligned}
$$

so that $a_{2}=6$ and

$$
\xi_{3}=(\sqrt{11}-3)^{-1}
$$

As this is the same as ξ_{1}, it follows that the continued fraction is periodic starting with a_{1} and it follows that

$$
\sqrt{11}=[3 ; 3,6,3,6,3,6, \ldots] .
$$

The convergents are

$$
\frac{3}{1}, \quad \frac{10}{3}, \quad \frac{63}{19}, \quad \ldots
$$

As expected, the convergents provide excellent approximations:
Theorem 18.1. If ξ is irrational then

$$
\xi-\frac{p_{k}}{q_{k}}=\frac{(-1)^{k}}{q_{k}\left(q_{k} \xi_{k+1}+q_{k-1}\right)} .
$$

Hence

$$
\frac{1}{q_{k}\left(q_{k}+q_{k+1}\right)}<\left|\xi-\frac{p_{k}}{q_{k}}\right|<\frac{1}{q_{k} q_{k+1}} .
$$

In particular

$$
\left|\xi-\frac{p_{k}}{q_{k}}\right|<\frac{1}{2} .
$$

Proof. The first equality follows from the definitions. The second inequalities follow from

$$
\begin{aligned}
q_{k+1} & =q_{k} a_{k+1}+q_{k-1} \\
& <q_{k} \xi_{k+1}+q_{k-1} \\
& <q_{k}\left(a_{k+1}+1\right)+q_{k-1} \\
& =q_{k}+q_{k+1} .
\end{aligned}
$$

It is interesting to observe that there is a partial converse of this result:

Theorem 18.2. If $x \in \mathbb{R}$ and

$$
\left|x-\frac{p}{q}\right|<\frac{1}{2 q^{2}} .
$$

then p / q is a convergent of the continued fraction expansion of x.
Proof. Suppose that

$$
0<x-\frac{p}{q}<\frac{1}{2 q^{2}}
$$

The case

$$
0<\frac{p}{q}-x<\frac{1}{2 q^{2}}
$$

is handled in a similar fashion.
We show that p / q is a best approximation to x. Suppose not. Then we may find r / s such that

$$
|s x-r|<|q x-p| \quad \text { where } \quad s \leq q
$$

Clearly

$$
\left|\frac{p}{q}-\frac{r}{s}\right| \geq \frac{1}{q s} .
$$

There are three cases. First suppose that

$$
\frac{r}{s}<\frac{p}{q}<x
$$

In this case

$$
\begin{aligned}
0 & <\frac{p}{q}-\frac{r}{s} \\
& <x-\frac{r}{s} \\
& <\frac{q}{s} \frac{1}{2 q^{2}} \\
& =\frac{1}{2 q s},
\end{aligned}
$$

a contradiction.
Now suppose that

$$
\frac{p}{q}<\frac{r}{s}<x .
$$

In this case

$$
\begin{aligned}
0 & <\frac{r}{s}-\frac{p}{q} \\
& <x-\frac{p}{q} \\
& <\frac{1}{2 q^{2}} \\
& <\frac{1}{q s}
\end{aligned}
$$

a contradiction.
Finally suppose that

$$
\frac{p}{q}<x<\frac{r}{s}
$$

Observe that

$$
\begin{aligned}
\frac{r}{s}-x & =\frac{r-s x}{s} \\
& <\frac{q x-p}{s} \\
& =\left(x-\frac{p}{q}\right) \cdot \frac{q}{s}
\end{aligned}
$$

Hence

$$
\begin{aligned}
0 & <\frac{r}{s}-\frac{p}{q} \\
& =\frac{r}{s}-x+x-\frac{p}{q} \\
& <\left(1+\frac{q}{s}\right)\left(x-\frac{p}{q}\right) \\
& <\frac{q+s}{s \cdot 2 q^{2}} \\
& \leq \frac{1}{q s}
\end{aligned}
$$

a contradiction.

