
18. Infinite Continued fractions

Suppose x = ξ is an irrational number. Then we have an infinite
continued fraction expansion for ξ,

ξ = [λ0;λ1, λ2, . . . ].

Note that
pk
qk

= [λ0;λ1, λ2, . . . , λk]

are best approximations of ξ so that

ξ = lim
k→∞

pk
qk

= lim
k→∞

[λ0;λ1, λ2, . . . , λk].

Now we check we can reverse all of this.
Suppose we start with an arbitrary continued fraction

[a0; a1, a2, . . . ].

Consider the congergents:
p0
q0

= a0,
p1
q1

= [a0; a1],
p2
q2

= [a0; a1, a2], . . . .

Pick n > 2. Then the numbers above for k ≤ n−1 are the convergents
of

pn
qn

= [a0; a1, a2, . . . , an].

It follows that
p2k−2
q2k−2

<
p2k
q2k

and
p2k−1
q2k−1

>
p2k+1

q2k+1

,

so that
p0
q0
<
p1
q1
<
p2
q2
< . . . , and

p1
q1
>
p3
q3
>
p5
q5
> . . . .

On the other hand,
p2k
q2k

<
p2k+1

q2k+1

.

In particular the sequence of even convergents is monotonic increasing
and bounded above by any of the odd convergents; similarly the odd
convergents are monotonic decreasing and bounded below by any of
the even convergents. It follows that the even and odd convergents
both tend to a limit; we check they tend to the same limit.

We have
pk−1
qk−1

− pk
qk

=
(−1)k

qk−1qk
.
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As the q1, q2, . . . is strictly increasing the RHS tends to zero and the
convergents tend to the same limit ξ.

Let’s try all of this out with ξ =
√

11.
√

11 = 3 + (
√

11− 3), so that
a0 = 3 and ξ1 = (

√
11− 3)−1.

1√
11− 3

=

√
11 + 3

2

= 3 +

√
11− 3

2
,

so that a1 = 3 and

ξ2 =

(√
11− 3

2

)−1
.

We have

2√
11− 3

=
√

11 + 3

= 6 +
√

11− 3.

so that a2 = 6 and

ξ3 =
(√

11− 3
)−1

.

As this is the same as ξ1, it follows that the continued fraction is
periodic starting with a1 and it follows that

√
11 = [3; 3, 6, 3, 6, 3, 6, . . . ].

The convergents are

3

1
,

10

3
,

63

19
, . . . .

As expected, the convergents provide excellent approximations:

Theorem 18.1. If ξ is irrational then

ξ − pk
qk

=
(−1)k

qk(qkξk+1 + qk−1)
.

Hence
1

qk(qk + qk+1)
<

∣∣∣∣ξ − pk
qk

∣∣∣∣ < 1

qkqk+1

.

In particular ∣∣∣∣ξ − pk
qk

∣∣∣∣ < 1

q2k
.
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Proof. The first equality follows from the definitions. The second in-
equalities follow from

qk+1 = qkak+1 + qk−1

< qkξk+1 + qk−1

< qk(ak+1 + 1) + qk−1

= qk + qk+1. �

It is interesting to observe that there is a partial converse of this
result:

Theorem 18.2. If x ∈ R and∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
.

then p/q is a convergent of the continued fraction expansion of x.

Proof. Suppose that

0 < x− p

q
<

1

2q2
.

The case

0 <
p

q
− x < 1

2q2

is handled in a similar fashion.
We show that p/q is a best approximation to x. Suppose not. Then

we may find r/s such that

|sx− r| < |qx− p| where s ≤ q.

Clearly ∣∣∣∣pq − r

s

∣∣∣∣ ≥ 1

qs
.

There are three cases. First suppose that
r

s
<
p

q
< x.

In this case

0 <
p

q
− r

s

< x− r

s

<
q

s

1

2q2

=
1

2qs
,
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a contradiction.
Now suppose that

p

q
<
r

s
< x.

In this case

0 <
r

s
− p

q

< x− p

q

<
1

2q2

<
1

qs
,

a contradiction.
Finally suppose that

p

q
< x <

r

s
.

Observe that
r

s
− x =

r − sx
s

<
qx− p
s

=

(
x− p

q

)
· q
s
.

Hence

0 <
r

s
− p

q

=
r

s
− x+ x− p

q

<
(

1 +
q

s

)(
x− p

q

)
<

q + s

s · 2q2

≤ 1

qs
,

a contradiction. �
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