17. CONTINUED FRACTIONS

It is expedient to add two more terms. Let p_o =0 and ¢_5 = 1 and
p_1 =1, ¢_1 = 0. Note that the formula

Qk+1Pk — QkPrk+1 = (—1)k+1-

in (16.3) still continues to hold, even though these initial numbers don’t
have much to do with finding a good approximation of x.
Consider the linear Diophantine equation
v — qeu = (—1)F

By (16.3) v = ggy1 and u = pgyq is one solution. On the other hand,
v = q—1 and u = pg_7 is another solution. It follows that there is an
integer A1 such that

Ph+1 = Pk—1 + Ak1Dk
Qkt1 = Qh—1 + Net1Qk-

Observe that A, is a natural number as g1 > qx. Multiplying the
second equation by x and subtracting the first equation gives

Q1 = Q-1 + Apy1Qk
Since the sign is alternating, this gives
k1| = [arra] + Mg farl.

Dividing through by |ax| gives

Q1 Q41
= N1 +
(6773 (673
Since o
1< ktl 0,
ap
it follows that o
k-1
>\k+1 = L— o .
k

This gives us a simple way to compute p, and ¢ in terms of aq, s, . ..
and A, Ao, . ...
In practice it is best to express everything in terms of

!

Th+1 = — .
A

In fact
a1=0-2—-—1=-1 and ap=1-z—rzxs={z},
so that

1

xry =

T — LTl
1



More generally,

O
Tk41 = —

(673

_ k-1
AeQl—1 + Q2

1
—Oék—z/Oék—l — Mg
Therefore
1

Ty = ———.

Tl — LT

Let’s see how this works for z = 7.

A =Lma=3.

and so

1

T = ~ 706, )\1 = LT1d = 7
r — LT
1
Ty = — =~ 15.99, A2 =Lx90 =15
Tr1 — LT1d
1
vy = —— =~ 1.00, A3 = Loz =1
Lo — LTo
1
Ty = —— 2 292.62, Ai = Lags = 292.
T3 — LT3

The best approximations of 7w are then

3 22 333 355 103,993
f— — — a —
1 7 106 113 33,102

It is convenient to present this data in a slightly different way. We
have
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Solving for x gives and then for z; and so on, gives

1
:L‘—)\O—F—
xy
=X+
A+ —
T2
1
= Xo+ .
AL+ 1 1
Ao+ -+ + —
Ak—1 Tk

There is a very similar expression for py /gy except that the last term
is A\, and not x:

1
%:AOJF .
" A+

1 N 1
A1 M

It is convenient to represent a continued fraction using much more
compact notation:

Ao+

v =oAL Aas ., A, 2] and % = o3 A Aas -, Al
k
Let x be the smallest index such that x;, = \,. Of course this can
only happen if x is rational. If z is irrational, so that xy # Az, then we
put Kk = o0.
Up to now we have ignored the annoying possibility that for some k
we can find r and s with s > ¢x_1, (r,s) =1 and

|sx — 7| = |gr—12 — pr—1].

Since r/s # pr_1/qx—1 we must have

st —1r = —(qp_1T — pr—_1)-
It follows that
Pr—1+7T
r=——
Q-1+ S
so that z is the mediant between py_1/qr_1 and r/s in the Farey se-

quence F,. It follows that k = k.
3



We can choose to include r/s as a best approximation or not. If we
include it then we take r/s = py/qr and pri1/qrs1 = x. In this case
Awr1 = 1 and so

xr = [)\0, )\17 )\2, . 7)\k; 1]
If we choose not to include r/s then x = p,./q, and
L= [)‘0;)\17)\27"'7)‘k+1]'

Example 17.1.

%1 =[1;2,1] = [1;3].

Finally, note that if we are given an arbitrary finite continued fraction

[CLO; a1, a2, . .. 7an]7
it has a rational value and the fractions
bo P P2
— = Qo, — = [ag; a1, — = ag; a1, as], . . .,
do q1 q2
are called the convergents of the continued fraction. Note that

x = |ag; ay,as, ..., a5 1, Tkl where T = [ag; Qi1 - - -, Qnl,

so that,

1
Tt .
It is then easy to see that z1, x», ..., z, is the sequence we constructed
before.

Note that x has a unique continued fraction expression, up to replac-
ing the last term a,, with the two terms a,, — 1 and 1.

xk:ak—l—
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