17. Continued FRactions

It is expedient to add two more terms. Let $p_{-2}=0$ and $q_{-2}=1$ and $p_{-1}=1, q_{-1}=0$. Note that the formula

$$
q_{k+1} p_{k}-q_{k} p_{k+1}=(-1)^{k+1} .
$$

in (16.3) still continues to hold, even though these initial numbers don't have much to do with finding a good approximation of x.

Consider the linear Diophantine equation

$$
p_{k} v-q_{k} u=(-1)^{k+1} .
$$

By (16.3) $v=q_{k+1}$ and $u=p_{k+1}$ is one solution. On the other hand, $v=q_{k-1}$ and $u=p_{k-1}$ is another solution. It follows that there is an integer λ_{k+1} such that

$$
\begin{aligned}
p_{k+1} & =p_{k-1}+\lambda_{k+1} p_{k} \\
q_{k+1} & =q_{k-1}+\lambda_{k+1} q_{k} .
\end{aligned}
$$

Observe that λ_{k+1} is a natural number as $q_{k+1}>q_{k}$. Multiplying the second equation by x and subtracting the first equation gives

$$
\alpha_{k+1}=\alpha_{k-1}+\lambda_{k+1} \alpha_{k} .
$$

Since the sign is alternating, this gives

$$
\left|\alpha_{k-1}\right|=\left|\alpha_{k+1}\right|+\lambda_{k+1}\left|\alpha_{k}\right| .
$$

Dividing through by $\left|\alpha_{k}\right|$ gives

$$
\left|\frac{\alpha_{k-1}}{\alpha_{k}}\right|=\lambda_{k+1}+\left|\frac{\alpha_{k+1}}{\alpha_{k}}\right| .
$$

Since

$$
-1 \leq \frac{\alpha_{k+1}}{\alpha_{k}}<0
$$

it follows that

$$
\lambda_{k+1}=\left\llcorner-\frac{\alpha_{k-1}}{\alpha_{k}}\right\lrcorner .
$$

This gives us a simple way to compute p_{k} and q_{k} in terms of $\alpha_{1}, \alpha_{2}, \ldots$ and $\lambda_{1}, \lambda_{2}, \ldots$.

In practice it is best to express everything in terms of

$$
x_{k+1}=-\frac{\alpha_{k-1}}{\alpha_{k}} .
$$

In fact

$$
\alpha_{-1}=0 \cdot x-1=-1 \quad \text { and } \quad \alpha_{0}=1 \cdot x-\llcorner x\lrcorner=\{x\},
$$

so that

$$
x_{1}=\frac{1}{x_{1}-\llcorner x\lrcorner} .
$$

More generally,

$$
\begin{aligned}
x_{k+1} & =-\frac{\alpha_{k-1}}{\alpha_{k}} \\
& =-\frac{\alpha_{k-1}}{\lambda_{k} \alpha_{k-1}+\alpha_{k-2}} \\
& =\frac{1}{-\alpha_{k-2} / \alpha_{k-1}-\lambda_{k}}
\end{aligned}
$$

Therefore

$$
x_{k}=\frac{1}{x_{k}-\left\llcorner x_{k}\right\lrcorner} .
$$

Let's see how this works for $x=\pi$.

$$
\lambda_{0}=\llcorner\pi\lrcorner=3
$$

and so

$$
\begin{array}{rlrl}
x_{1} & =\frac{1}{x-\llcorner x\lrcorner} \approx 7.06, & & \lambda_{1}=\left\llcorner x_{1}\right\lrcorner=7 \\
x_{2} & =\frac{1}{x_{1}-\left\llcorner x_{1}\right\lrcorner} \approx 15.99, & & \lambda_{2}=\left\llcorner x_{2}\right\lrcorner=15 \\
x_{3} & =\frac{1}{x_{2}-\left\llcorner x_{2}\right\lrcorner} \approx 1.00, & & \lambda_{3}=\left\llcorner x_{3}\right\lrcorner=1 \\
x_{4} & =\frac{1}{x_{3}-\left\llcorner x_{3}\right\lrcorner} \approx 292.62, & \lambda_{4}=\left\llcorner x_{4}\right\lrcorner=292 .
\end{array}
$$

The best approximations of π are then

$$
\frac{3}{1} \quad \frac{22}{7} \quad \frac{333}{106} \quad \frac{355}{113} \quad \text { and } \quad \frac{103,993}{33,102}
$$

It is convenient to present this data in a slightly different way. We have

$$
x_{1}=\frac{1}{x-\lambda_{0}} \quad x_{2}=\frac{1}{x_{1}-\lambda_{1}} \quad \ldots .
$$

Solving for x gives and then for x_{1} and so on, gives

$$
\begin{aligned}
x & =\lambda_{0}+\frac{1}{x_{1}} \\
& =\lambda_{0}+\frac{1}{\lambda_{1}+\frac{1}{x_{2}}} \\
\vdots & =\vdots \\
& =\lambda_{0}+\frac{1}{\lambda_{1}+\frac{1}{\lambda_{2}+\cdots+\frac{1}{\lambda_{k-1}}+\frac{1}{x_{k}}}}
\end{aligned}
$$

There is a very similar expression for p_{k} / q_{k} except that the last term is λ_{k} and not x_{k} :

$$
\frac{p_{k}}{q_{k}}=\lambda_{0}+\frac{1}{\lambda_{1}+\frac{1}{\lambda_{2}+\cdots+\frac{1}{\lambda_{k-1}}+\frac{1}{\lambda_{k}}}}
$$

It is convenient to represent a continued fraction using much more compact notation:

$$
x=\left[\lambda_{0} ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k-1}, x_{k}\right] \quad \text { and } \quad \frac{p_{k}}{q_{k}}=\left[\lambda_{0} ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right] .
$$

Let κ be the smallest index such that $x_{k}=\lambda_{k}$. Of course this can only happen if x is rational. If x is irrational, so that $x_{k} \neq \lambda_{k}$, then we put $\kappa=\infty$.

Up to now we have ignored the annoying possibility that for some k we can find r and s with $s>q_{k-1},(r, s)=1$ and

$$
|s x-r|=\left|q_{k-1} x-p_{k-1}\right| .
$$

Since $r / s \neq p_{k-1} / q_{k-1}$ we must have

$$
s x-r=-\left(q_{k-1} x-p_{k-1}\right) .
$$

It follows that

$$
x=\frac{p_{k-1}+r}{q_{k-1}+s},
$$

so that x is the mediant between p_{k-1} / q_{k-1} and r / s in the Farey sequence \mathcal{F}_{s}. It follows that $k=\kappa$.

We can choose to include r / s as a best approximation or not. If we include it then we take $r / s=p_{k} / q_{k}$ and $p_{k+1} / q_{k+1}=x$. In this case $\lambda_{\kappa+1}=1$ and so

$$
x=\left[\lambda_{0} ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}, 1\right] .
$$

If we choose not to include r / s then $x=p_{\kappa} / q_{\kappa}$ and

$$
x=\left[\lambda_{0} ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}+1\right] .
$$

Example 17.1.

$$
\frac{4}{3}=[1 ; 2,1]=[1 ; 3] .
$$

Finally, note that if we are given an arbitrary finite continued fraction

$$
\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n}\right]
$$

it has a rational value and the fractions

$$
\frac{p_{0}}{q_{0}}=a_{0}, \quad \frac{p_{1}}{q_{1}}=\left[a_{0} ; a_{1}\right], \quad \frac{p_{2}}{q_{2}}=\left[a_{0} ; a_{1}, a_{2}\right], \ldots,
$$

are called the convergents of the continued fraction. Note that

$$
x=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{k-1}, x_{k}\right] \quad \text { where } \quad x_{k}=\left[a_{k} ; a_{k+1}, \ldots, a_{n}\right],
$$

so that,

$$
x_{k}=a_{k}+\frac{1}{x_{k+1}} .
$$

It is then easy to see that $x_{1}, x_{2}, \ldots, x_{n}$ is the sequence we constructed before.

Note that x has a unique continued fraction expression, up to replacing the last term a_{n} with the two terms $a_{n}-1$ and 1 .

