
17. Continued fractions

It is expedient to add two more terms. Let p−2 = 0 and q−2 = 1 and
p−1 = 1, q−1 = 0. Note that the formula

qk+1pk − qkpk+1 = (−1)k+1.

in (16.3) still continues to hold, even though these initial numbers don’t
have much to do with finding a good approximation of x.

Consider the linear Diophantine equation

pkv − qku = (−1)k+1.

By (16.3) v = qk+1 and u = pk+1 is one solution. On the other hand,
v = qk−1 and u = pk−1 is another solution. It follows that there is an
integer λk+1 such that

pk+1 = pk−1 + λk+1pk

qk+1 = qk−1 + λk+1qk.

Observe that λk+1 is a natural number as qk+1 > qk. Multiplying the
second equation by x and subtracting the first equation gives

αk+1 = αk−1 + λk+1αk.

Since the sign is alternating, this gives

|αk−1| = |αk+1|+ λk+1|αk|.
Dividing through by |αk| gives∣∣∣∣αk−1

αk

∣∣∣∣ = λk+1 +

∣∣∣∣αk+1

αk

∣∣∣∣ .
Since

−1 ≤ αk+1

αk
< 0,

it follows that
λk+1 = x−αk−1

αk
y.

This gives us a simple way to compute pk and qk in terms of α1, α2, . . .
and λ1, λ2, . . . .

In practice it is best to express everything in terms of

xk+1 = −αk−1

αk
.

In fact

α−1 = 0 · x− 1 = −1 and α0 = 1 · x− xxy = {x },
so that

x1 =
1

x− xxy
.
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More generally,

xk+1 = −αk−1

αk

= − αk−1

λkαk−1 + αk−2

=
1

−αk−2/αk−1 − λk
.

Therefore

xk =
1

xk − xxky
.

Let’s see how this works for x = π.

λ0 = xπy = 3.

and so

x1 =
1

x− xxy
≈ 7.06, λ1 = xx1y = 7

x2 =
1

x1 − xx1y
≈ 15.99, λ2 = xx2y = 15

x3 =
1

x2 − xx2y
≈ 1.00, λ3 = xx3y = 1

x4 =
1

x3 − xx3y
≈ 292.62, λ4 = xx4y = 292.

The best approximations of π are then

3

1

22

7

333

106

355

113
and

103, 993

33, 102

It is convenient to present this data in a slightly different way. We
have

x1 =
1

x− λ0
x2 =

1

x1 − λ1
. . . .
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Solving for x gives and then for x1 and so on, gives

x = λ0 +
1

x1

= λ0 +
1

λ1 +
1

x2
... =

...

= λ0 +
1

λ1 +
1

λ2 + · · ·+
1

λk−1

+
1

xk

There is a very similar expression for pk/qk except that the last term
is λk and not xk:

pk
qk

= λ0 +
1

λ1 +
1

λ2 + · · ·+
1

λk−1

+
1

λk
.

It is convenient to represent a continued fraction using much more
compact notation:

x = [λ0;λ1, λ2, . . . , λk−1, xk] and
pk
qk

= [λ0;λ1, λ2, . . . , λk].

Let κ be the smallest index such that xk = λk. Of course this can
only happen if x is rational. If x is irrational, so that xk 6= λk, then we
put κ =∞.

Up to now we have ignored the annoying possibility that for some k
we can find r and s with s > qk−1, (r, s) = 1 and

|sx− r| = |qk−1x− pk−1|.
Since r/s 6= pk−1/qk−1 we must have

sx− r = −(qk−1x− pk−1).

It follows that

x =
pk−1 + r

qk−1 + s
,

so that x is the mediant between pk−1/qk−1 and r/s in the Farey se-
quence Fs. It follows that k = κ.
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We can choose to include r/s as a best approximation or not. If we
include it then we take r/s = pk/qk and pk+1/qk+1 = x. In this case
λκ+1 = 1 and so

x = [λ0;λ1, λ2, . . . , λk, 1].

If we choose not to include r/s then x = pκ/qκ and

x = [λ0;λ1, λ2, . . . , λk + 1].

Example 17.1.
4

3
= [1; 2, 1] = [1; 3].

Finally, note that if we are given an arbitrary finite continued fraction

[a0; a1, a2, . . . , an],

it has a rational value and the fractions
p0
q0

= a0,
p1
q1

= [a0; a1],
p2
q2

= [a0; a1, a2], . . . ,

are called the convergents of the continued fraction. Note that

x = [a0; a1, a2, . . . , ak−1, xk] where xk = [ak; ak+1, . . . , an],

so that,

xk = ak +
1

xk+1

.

It is then easy to see that x1, x2, . . . , xn is the sequence we constructed
before.

Note that x has a unique continued fraction expression, up to replac-
ing the last term an with the two terms an − 1 and 1.
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