17. Continued fractions

It is expedient to add two more terms. Let $p_{-2} = 0$ and $q_{-2} = 1$ and $p_{-1} = 1$, $q_{-1} = 0$. Note that the formula

$$q_{k+1}p_k - q_k p_{k+1} = (-1)^{k+1}.$$

in (16.3) still continues to hold, even though these initial numbers don't have much to do with finding a good approximation of x.

Consider the linear Diophantine equation

$$p_k v - q_k u = (-1)^{k+1}.$$

By (16.3) $v = q_{k+1}$ and $u = p_{k+1}$ is one solution. On the other hand, $v = q_{k-1}$ and $u = p_{k-1}$ is another solution. It follows that there is an integer λ_{k+1} such that

$$p_{k+1} = p_{k-1} + \lambda_{k+1} p_k$$
$$q_{k+1} = q_{k-1} + \lambda_{k+1} q_k.$$

Observe that λ_{k+1} is a natural number as $q_{k+1} > q_k$. Multiplying the second equation by x and subtracting the first equation gives

$$\alpha_{k+1} = \alpha_{k-1} + \lambda_{k+1}\alpha_k$$

Since the sign is alternating, this gives

$$|\alpha_{k-1}| = |\alpha_{k+1}| + \lambda_{k+1}|\alpha_k|$$

Dividing through by $|\alpha_k|$ gives

$$\left|\frac{\alpha_{k-1}}{\alpha_k}\right| = \lambda_{k+1} + \left|\frac{\alpha_{k+1}}{\alpha_k}\right|.$$

Since

$$-1 \le \frac{\alpha_{k+1}}{\alpha_k} < 0,$$

it follows that

$$\lambda_{k+1} = \llcorner -\frac{\alpha_{k-1}}{\alpha_k} \lrcorner.$$

This gives us a simple way to compute p_k and q_k in terms of $\alpha_1, \alpha_2, \ldots$ and $\lambda_1, \lambda_2, \ldots$

In practice it is best to express everything in terms of

$$x_{k+1} = -\frac{\alpha_{k-1}}{\alpha_k}.$$

In fact

$$\alpha_{-1} = 0 \cdot x - 1 = -1$$
 and $\alpha_0 = 1 \cdot x - \lfloor x \rfloor = \{x\},\$

so that

$$x_1 = \frac{1}{\substack{x - \llcorner x \lrcorner}}.$$

More generally,

$$x_{k+1} = -\frac{\alpha_{k-1}}{\alpha_k}$$
$$= -\frac{\alpha_{k-1}}{\lambda_k \alpha_{k-1} + \alpha_{k-2}}$$
$$= \frac{1}{-\alpha_{k-2}/\alpha_{k-1} - \lambda_k}.$$

Therefore

$$x_k = \frac{1}{x_k - \llcorner x_k \lrcorner}$$

Let's see how this works for $x = \pi$.

$$\lambda_0 = \llcorner \pi \lrcorner = 3.$$

and so

$$x_{1} = \frac{1}{x - \lfloor x \rfloor} \approx 7.06, \qquad \lambda_{1} = \lfloor x_{1} \rfloor = 7$$

$$x_{2} = \frac{1}{x_{1} - \lfloor x_{1} \rfloor} \approx 15.99, \qquad \lambda_{2} = \lfloor x_{2} \rfloor = 15$$

$$x_{3} = \frac{1}{x_{2} - \lfloor x_{2} \rfloor} \approx 1.00, \qquad \lambda_{3} = \lfloor x_{3} \rfloor = 1$$

$$x_{4} = \frac{1}{x_{3} - \lfloor x_{3} \rfloor} \approx 292.62, \qquad \lambda_{4} = \lfloor x_{4} \rfloor = 292.$$

The best approximations of π are then

$$\frac{3}{1} \quad \frac{22}{7} \quad \frac{333}{106} \quad \frac{355}{113} \quad \text{and} \quad \frac{103,993}{33,102}$$

It is convenient to present this data in a slightly different way. We have

$$x_1 = \frac{1}{x - \lambda_0}$$
 $x_2 = \frac{1}{x_1 - \lambda_1}$

Solving for x gives and then for x_1 and so on, gives

$$x = \lambda_0 + \frac{1}{x_1}$$

= $\lambda_0 + \frac{1}{\lambda_1 + \frac{1}{x_2}}$
:= :
= $\lambda_0 + \frac{1}{\lambda_1 + \frac{1}{\lambda_2 + \dots + \frac{1}{\lambda_{k-1}} + \frac{1}{x_k}}}$

There is a very similar expression for p_k/q_k except that the last term is λ_k and not x_k :

$$\frac{p_k}{q_k} = \lambda_0 + \frac{1}{\lambda_1 + \frac{1}{\lambda_2 + \dots + \frac{1}{\lambda_{k-1}} + \frac{1}{\lambda_k}}}$$

It is convenient to represent a continued fraction using much more compact notation:

$$x = [\lambda_0; \lambda_1, \lambda_2, \dots, \lambda_{k-1}, x_k]$$
 and $\frac{p_k}{q_k} = [\lambda_0; \lambda_1, \lambda_2, \dots, \lambda_k].$

Let κ be the smallest index such that $x_k = \lambda_k$. Of course this can only happen if x is rational. If x is irrational, so that $x_k \neq \lambda_k$, then we put $\kappa = \infty$.

Up to now we have ignored the annoying possibility that for some k we can find r and s with $s > q_{k-1}$, (r, s) = 1 and

$$|sx - r| = |q_{k-1}x - p_{k-1}|.$$

Since $r/s \neq p_{k-1}/q_{k-1}$ we must have

$$sx - r = -(q_{k-1}x - p_{k-1}).$$

It follows that

$$x = \frac{p_{k-1} + r}{q_{k-1} + s},$$

so that x is the mediant between p_{k-1}/q_{k-1} and r/s in the Farey sequence \mathcal{F}_s . It follows that $k = \kappa$.

We can choose to include r/s as a best approximation or not. If we include it then we take $r/s = p_k/q_k$ and $p_{k+1}/q_{k+1} = x$. In this case $\lambda_{\kappa+1} = 1$ and so

 $x = [\lambda_0; \lambda_1, \lambda_2, \dots, \lambda_k, 1].$

If we choose not to include r/s then $x = p_{\kappa}/q_{\kappa}$ and

$$x = [\lambda_0; \lambda_1, \lambda_2, \dots, \lambda_k + 1].$$

Example 17.1.

$$\frac{4}{3} = [1; 2, 1] = [1; 3].$$

Finally, note that if we are given an arbitrary finite continued fraction

$$[a_0;a_1,a_2,\ldots,a_n],$$

it has a rational value and the fractions

$$\frac{p_0}{q_0} = a_0, \qquad \frac{p_1}{q_1} = [a_0; a_1], \qquad \frac{p_2}{q_2} = [a_0; a_1, a_2], \dots,$$

are called the **convergents** of the continued fraction. Note that

 $x = [a_0; a_1, a_2, \dots, a_{k-1}, x_k]$ where $x_k = [a_k; a_{k+1}, \dots, a_n]$, so that,

$$x_k = a_k + \frac{1}{x_{k+1}}$$

It is then easy to see that x_1, x_2, \ldots, x_n is the sequence we constructed before.

Note that x has a unique continued fraction expression, up to replacing the last term a_n with the two terms $a_n - 1$ and 1.