16. BEST APPROXIMATIONS

22

7
is a very common approximation of 7 as it is both simple and it is also a

remarkably good approximation; the error is about 0.00126. The next

best approximation is
179

when the error is 0.00124. Two otfgr very good approximations (known
in Europe since the 16th century) are

333

106
where the error is about 8.3 x 1075 and

335

113

where the error is about 2.6 x 1077 (known in China since the 5th

century).
No fraction with denominator 106 < ¢ < 113 is better than 22/7. It
is the aim of this section to examine this sort of phenomena.

Definition 16.1. We say that p/q is a best approximation to x if
'z = 9| < lqz —p|
implies that ¢ > q and if ¢ = q then p' = p.

Lemma 16.2. Ifp/q is a best approximation of x then p/q is the closest
element of F, to x.

Proof. If p'/q' € F, then ¢ < q and so if p/q # p'/q' we have
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Note that the converse of (16.2)) need not hold; the closest element
p/q of F, need not be a best approximation.
Observe that if p = mp’ and ¢ = mq¢’ and m > 1 then
¢z — p'| = mlqz — p|
<l|qz — pl.
Thus if p and ¢ gives a best approximation then p and ¢ are auto-

matically coprime. Note that this gives us an algorithm to construct
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a sequence of rational numbers py/qx. Just keep taking the next best
approximation.

First note that the Farey sequence F,, is periodic with period one; if
you know the rational numbers belonging to [0, 1) just shift these by
the integers to get the whole Farey sequence.

So the first step is to shift x into the interval [0,1). Put pg = Lz
and gy = 1. Note that py/qo need not be a best approximation; in fact
it is a best approximation if and only if {z } < 1/2.

Note that given a positive real 7 > 0 there are integers p and q € Z
such that

1
1<qg<r7 and lgz — p| < —.
T

If gox — pop = 0 then x = py/qo and we stop the algorithm. If not,

put
7 = |g0z — po| ™

and then pick the smallest ¢
1<¢g<rT such that lgz — p| < |gox — po.

This defines the pair p; and ¢; (if po/qo is not a best approximation then
¢1 = qo = 1, but this is the only time this will happen). If z = p; /¢
then stop. Otherwise let

¢ < ¢ <|pz—p|™
be the smallest integer such that

@22 — p2| < |1z — p1

for some integer p,. Continuing in this fashion, for those integers k
such that gyz — pi, # 0, we construct integers

Qo <qg<g<..,
such that

|Gkr17 — Prsa| < |qer — pil
and
lgz — p| > |qrr — P for all 0<q<qrs1, Vp.

Further

Qo1 < laxe —pi| "
In principle this gives an algorithm. However it would be nice to give

a better description of how to find q;. The key result is:

Lemma 16.3.

qk+1Pk — QkPk+1 = (_1)k+1-
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Proof. We start by proving the weaker assertion that the RHS is £1.
Note that

Qk+1Pk — QePk+1 = Qk(Qkﬂx - pk+1) - qk+1(qu - Pk)-

Set
A = g — Pk-
Then
@10k — @rPrr| < qrlowsr] + Qe |l
< 241 ||
< 2.

AS qri1pk — Qrpraa is an integer, it follows that

Qk+1Pk — QrPr+1 = £1.
Suppose that a; and a1 have the same sign. Then

lag| > o — gy

= |(Qk+1 - Qk>x - (pk+1 - pk)|‘

ASs qri1 — @ < qry1 this contradicts our choice of qry;. Thus ay
alternate sign. Using the relation,

Qk+1Pk — QkPr+1 = qeQk — Qr4+100% 41,
it follows that
Qk+1Pk — qkPr+1 = SgN ak+1E|-

As ag =1 -2 —rLxs > 0 it follows that sgnay = 1, so that sgnay =
(—1)*. O

Lwhere sgny is the sign, —1, 0 or 1, of y.
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