$$\frac{22}{2}$$

7

is a very common approximation of π as it is both simple and it is also a remarkably good approximation; the error is about 0.00126. The next best approximation is

$$\frac{179}{57}$$
,

when the error is 0.00124. Two other very good approximations (known in Europe since the 16th century) are

where the error is about
$$8.3 \times 10^{-5}$$
 and $\frac{333}{106}$
 $\frac{335}{113}$

where the error is about 2.6×10^{-7} (known in China since the 5th century).

No fraction with denominator 106 < q < 113 is better than 22/7. It is the aim of this section to examine this sort of phenomena.

Definition 16.1. We say that p/q is a **best approximation** to x if

$$|qx - p'| \le |qx - p|$$

implies that $q' \ge q$ and if q' = q then p' = p.

Lemma 16.2. If p/q is a best approximation of x then p/q is the closest element of \mathcal{F}_q to x.

Proof. If $p'/q' \in \mathcal{F}_q$ then $q' \leq q$ and so if $p/q \neq p'/q'$ we have

$$\begin{aligned} x - \frac{p}{q} &| < \frac{q'}{q} \left| x - \frac{p'}{q'} \right| \\ &\leq \left| x - \frac{p'}{q'} \right|. \end{aligned}$$

Note that the converse of (16.2) need not hold; the closest element p/q of \mathcal{F}_q need not be a best approximation.

Observe that if p = mp' and q = mq' and m > 1 then

$$|q'x - p'| = m|qx - p|$$

< $|qx - p|.$

Thus if p and q gives a best approximation then p and q are automatically coprime. Note that this gives us an algorithm to construct a sequence of rational numbers p_k/q_k . Just keep taking the next best approximation.

First note that the Farey sequence \mathcal{F}_n is periodic with period one; if you know the rational numbers belonging to [0, 1) just shift these by the integers to get the whole Farey sequence.

So the first step is to shift x into the interval [0, 1). Put $p_0 = \lfloor x \rfloor$ and $q_0 = 1$. Note that p_0/q_0 need not be a best approximation; in fact it is a best approximation if and only if $\{x\} < 1/2$.

Note that given a positive real $\tau > 0$ there are integers p and $q \in \mathbb{Z}$ such that

$$1 \le q \le \tau$$
 and $|qx - p| < \frac{1}{\tau}$.

If $q_0 x - p_0 = 0$ then $x = p_0/q_0$ and we stop the algorithm. If not, put

$$\tau = |q_0 x - p_0|^{-1}$$

and then pick the smallest q

$$1 \le q \le \tau$$
 such that $|qx - p| < |q_0x - p_0|.$

This defines the pair p_1 and q_1 (if p_0/q_0 is not a best approximation then $q_1 = q_0 = 1$, but this is the only time this will happen). If $x = p_1/q_1$ then stop. Otherwise let

$$q_1 < q_2 \le |q_1 x - p_1|^{-1}$$

be the smallest integer such that

$$|q_2x - p_2| < |q_1x - p_1|$$

for some integer p_2 . Continuing in this fashion, for those integers k such that $q_k x - p_k \neq 0$, we construct integers

 $q_0 \leq q_1 < q_2 < \dots,$

such that

$$|q_{k+1}x - p_{k+1}| < |q_kx - p_k|$$

and

$$|qx - p| \ge |q_k x - p_k| \quad \text{for all} \quad 0 < q < q_{k+1}, \quad \forall p$$

Further

$$q_{k+1} \le |q_k x - p_k|^{-1}$$

In principle this gives an algorithm. However it would be nice to give a better description of how to find q_k . The key result is:

Lemma 16.3.

$$q_{k+1}p_k - q_k p_{k+1} = (-1)^{k+1}.$$

Proof. We start by proving the weaker assertion that the RHS is ± 1 . Note that

$$q_{k+1}p_k - q_k p_{k+1} = q_k(q_{k+1}x - p_{k+1}) - q_{k+1}(q_kx - p_k).$$

Set

$$\alpha_k = q_k x - p_k.$$

Then

$$|q_{k+1}p_k - q_k p_{k+1}| \le q_k |\alpha_{k+1}| + q_{k+1} |\alpha_k| < 2q_{k+1} |\alpha_k| < 2.$$

As $q_{k+1}p_k - q_kp_{k+1}$ is an integer, it follows that

$$q_{k+1}p_k - q_k p_{k+1} = \pm 1$$

Suppose that α_k and α_{k+1} have the same sign. Then

$$\begin{aligned} |\alpha_k| &> |\alpha_k - \alpha_{k+1}| \\ &= |(q_{k+1} - q_k)x - (p_{k+1} - p_k)| \end{aligned}$$

As $q_{k+1} - q_k < q_{k+1}$ this contradicts our choice of q_{k+1} . Thus α_k alternate sign. Using the relation,

$$q_{k+1}p_k - q_k p_{k+1} = q_k \alpha_k - q_{k+1} \alpha_{k+1},$$

it follows that

$$q_{k+1}p_k - q_k p_{k+1} = \operatorname{sgn} \alpha_{k+1}^{1}.$$

As $\alpha_0 = 1 \cdot x - \lfloor x \rfloor > 0$ it follows that $\operatorname{sgn} \alpha_0 = 1$, so that $\operatorname{sgn} \alpha_k = (-1)^k$.

¹where sgn y is the sign, -1, 0 or 1, of y.