16. Best approximations

$$
\frac{22}{7}
$$

is a very common approximation of π as it is both simple and it is also a remarkably good approximation; the error is about 0.00126. The next best approximation is

$$
\frac{179}{57}
$$

when the error is 0.00124 . Two other very good approximations (known in Europe since the 16th century) are

$$
\frac{333}{106}
$$

where the error is about 8.3×10^{-5} and

$$
\frac{335}{113}
$$

where the error is about 2.6×10^{-7} (known in China since the 5th century).

No fraction with denominator $106<q<113$ is better than $22 / 7$. It is the aim of this section to examine this sort of phenomena.

Definition 16.1. We say that p / q is a best approximation to x if

$$
\left|q^{\prime} x-p^{\prime}\right| \leq|q x-p|
$$

implies that $q^{\prime} \geq q$ and if $q^{\prime}=q$ then $p^{\prime}=p$.
Lemma 16.2. If p / q is a best approximation of x then p / q is the closest element of \mathcal{F}_{q} to x.
Proof. If $p^{\prime} / q^{\prime} \in \mathcal{F}_{q}$ then $q^{\prime} \leq q$ and so if $p / q \neq p^{\prime} / q^{\prime}$ we have

$$
\begin{aligned}
\left|x-\frac{p}{q}\right| & <\frac{q^{\prime}}{q}\left|x-\frac{p^{\prime}}{q^{\prime}}\right| \\
& \leq\left|x-\frac{p^{\prime}}{q^{\prime}}\right| .
\end{aligned}
$$

Note that the converse of (16.2) need not hold; the closest element p / q of \mathcal{F}_{q} need not be a best approximation.

Observe that if $p=m p^{\prime}$ and $q=m q^{\prime}$ and $m>1$ then

$$
\begin{aligned}
\left|q^{\prime} x-p^{\prime}\right| & =m|q x-p| \\
& <|q x-p| .
\end{aligned}
$$

Thus if p and q gives a best approximation then p and q are automatically coprime. Note that this gives us an algorithm to construct
a sequence of rational numbers p_{k} / q_{k}. Just keep taking the next best approximation.

First note that the Farey sequence \mathcal{F}_{n} is periodic with period one; if you know the rational numbers belonging to $[0,1)$ just shift these by the integers to get the whole Farey sequence.

So the first step is to shift x into the interval $[0,1)$. Put $p_{0}=\llcorner x\lrcorner$ and $q_{0}=1$. Note that p_{0} / q_{0} need not be a best approximation; in fact it is a best approximation if and only if $\{x\}<1 / 2$.

Note that given a positive real $\tau>0$ there are integers p and $q \in \mathbb{Z}$ such that

$$
1 \leq q \leq \tau \quad \text { and } \quad|q x-p|<\frac{1}{\tau}
$$

If $q_{0} x-p_{0}=0$ then $x=p_{0} / q_{0}$ and we stop the algorithm. If not, put

$$
\tau=\left|q_{0} x-p_{0}\right|^{-1}
$$

and then pick the smallest q

$$
1 \leq q \leq \tau \quad \text { such that } \quad|q x-p|<\left|q_{0} x-p_{0}\right|
$$

This defines the pair p_{1} and q_{1} (if p_{0} / q_{0} is not a best approximation then $q_{1}=q_{0}=1$, but this is the only time this will happen). If $x=p_{1} / q_{1}$ then stop. Otherwise let

$$
q_{1}<q_{2} \leq\left|q_{1} x-p_{1}\right|^{-1}
$$

be the smallest integer such that

$$
\left|q_{2} x-p_{2}\right|<\left|q_{1} x-p_{1}\right|
$$

for some integer p_{2}. Continuing in this fashion, for those integers k such that $q_{k} x-p_{k} \neq 0$, we construct integers

$$
q_{0} \leq q_{1}<q_{2}<\ldots
$$

such that

$$
\left|q_{k+1} x-p_{k+1}\right|<\left|q_{k} x-p_{k}\right|
$$

and

$$
|q x-p| \geq\left|q_{k} x-p_{k}\right| \quad \text { for all } \quad 0<q<q_{k+1}, \quad \forall p
$$

Further

$$
q_{k+1} \leq\left|q_{k} x-p_{k}\right|^{-1}
$$

In principle this gives an algorithm. However it would be nice to give a better description of how to find q_{k}. The key result is:

Lemma 16.3.

$$
q_{k+1} p_{k}-q_{k} p_{k+1}=(-1)^{k+1}
$$

Proof. We start by proving the weaker assertion that the RHS is ± 1. Note that

$$
q_{k+1} p_{k}-q_{k} p_{k+1}=q_{k}\left(q_{k+1} x-p_{k+1}\right)-q_{k+1}\left(q_{k} x-p_{k}\right) .
$$

Set

$$
\alpha_{k}=q_{k} x-p_{k} .
$$

Then

$$
\begin{aligned}
\left|q_{k+1} p_{k}-q_{k} p_{k+1}\right| & \leq q_{k}\left|\alpha_{k+1}\right|+q_{k+1}\left|\alpha_{k}\right| \\
& <2 q_{k+1}\left|\alpha_{k}\right| \\
& <2 .
\end{aligned}
$$

As $q_{k+1} p_{k}-q_{k} p_{k+1}$ is an integer, it follows that

$$
q_{k+1} p_{k}-q_{k} p_{k+1}= \pm 1
$$

Suppose that α_{k} and α_{k+1} have the same sign. Then

$$
\begin{aligned}
\left|\alpha_{k}\right| & >\left|\alpha_{k}-\alpha_{k+1}\right| \\
& =\left|\left(q_{k+1}-q_{k}\right) x-\left(p_{k+1}-p_{k}\right)\right| .
\end{aligned}
$$

As $q_{k+1}-q_{k}<q_{k+1}$ this contradicts our choice of q_{k+1}. Thus α_{k} alternate sign. Using the relation,

$$
q_{k+1} p_{k}-q_{k} p_{k+1}=q_{k} \alpha_{k}-q_{k+1} \alpha_{k+1},
$$

it follows that

$$
\left.q_{k+1} p_{k}-q_{k} p_{k+1}=\operatorname{sgn} \alpha_{k+1}\right]^{1} .
$$

As $\alpha_{0}=1 \cdot x-\llcorner x\lrcorner>0$ it follows that $\operatorname{sgn} \alpha_{0}=1$, so that $\operatorname{sgn} \alpha_{k}=$ $(-1)^{k}$.

[^0]
[^0]: ${ }^{1}$ where $\operatorname{sgn} y$ is the sign, $-1,0$ or 1 , of y.

