15. Farey Sequences

Definition 15.1. Fix a natural number n.
The Farey sequence of order n, denoted \mathcal{F}_{n}, is the set of rational numbers p / q with denominator $1 \leq q \leq n$, arranged in increasing order.
\mathcal{F}_{1} is the sequence of integers, and so on.
Lemma 15.2. If n is a natural number then

$$
\left|\mathcal{F}_{n} \cap[0,1]\right|=1+\varphi(1)+\varphi(2)+\cdots+\varphi(n) .
$$

Proof. Indeed an element of

$$
\mathcal{F}_{n} \cap(0,1)
$$

has the unique form a / b, where $2 \leq b \leq n$ and a is coprime to b.
Definition 15.3. p / q and $r / s \in \mathcal{F}_{n}$ are adjacent if they are successive elements of the sequence \mathcal{F}_{n}.

Definition-Proposition 15.4.

(1) If p / q and r / s are adjacent in \mathcal{F}_{n} for some n then $|p s-q r|=1$.
(2) If $|p s-q r|=1$ then p / q and r / s are adjacent in \mathcal{F}_{n} for

$$
\max (q, s) \leq n<q+s .
$$

and they are separated by the single element

$$
\frac{(p+r)}{(q+s)} \in \mathcal{F}_{q+s},
$$

called the mediant of p / q and r / s.
Proof. We first prove (2). Suppose that p / q and r / s are two elements of \mathcal{F}_{n} such that $q r-p s= \pm 1$. Possibly switching p / q and r / s we may assume that $r / s>p / q$ and $q r-p s=1$.

Consider the function

$$
f:[0, \infty] \longrightarrow[p / q, r / s] \quad \text { given by } \quad f(t)=\frac{p+t r}{q+t s} .
$$

As t increases from 0 to ∞, f increases from p / q to r / s. Thus f is a bijection. Moreover it is clear that $f(t)$ is rational if and only if t is rational. Thus we may assume that $t=u / v$, where $u, v>0$ and $(u, v)=1$. We have

$$
f\left(\frac{u}{v}\right)=\frac{v p+u r}{v q+u s} .
$$

As

$$
\begin{aligned}
& q(v p+u r)-p(v q+u s)=u(q r-p s)=u \\
& s(v p+u r)-r(v q+u s)=v(p s-q r)=-v,
\end{aligned}
$$

it follows that $v p+u r$ is coprime to $v q+u s$.
It follows that as u and v run over all coprime integers, $f(u / v)$ runs over all rational numbers between p / q and r / s. Amongst all such choices, $u=v=1$ gives the smallest denominator. $f(1)$ is the mediant of p / q and r / s and for future reference note that

$$
|(p+r) q-(q+s) p|=1 \quad \text { and } \quad|r(q+s)-s(p+r)|=1
$$

Since $q+s>\max (q, s)$, (2) holds.
We now turn to (1). We prove this by induction on n. If $n=1$ then $p / q=a / 1$ and $r / s=(a+1) / 1$ so that

$$
\begin{aligned}
|p s-q r| & =|a \cdot 1-(a+1) \cdot 1| \\
& =1 .
\end{aligned}
$$

Thus (1) holds when $n=1$.
Now suppose that (1) holds for n. The only elements of \mathcal{F}_{n+1} not in \mathcal{F}_{n} are mediants of elements of \mathcal{F}_{n} and we have already checked (1) in this case. Thus (1) holds by induction.

Theorem 15.5 (Hurwitz). Suppose that the real number x is between two adjacent elements r / s and u / v of \mathcal{F}_{n}.

Then at least one of the three numbers

$$
\frac{r}{s} \quad \frac{u}{v} \quad \text { and } \quad \frac{l}{m}=\frac{(r+u)}{(s+v)}
$$

is a solution of the equation

$$
\left|x-\frac{p}{q}\right|<\frac{1}{\sqrt{5} q^{2}} .
$$

In particular if x is irrational then we may find infinitely many such p and q.

Proof. Possibly relabelling, we may assume that

$$
\frac{r}{s}<\frac{l}{m}<\frac{u}{v}
$$

If p / q is one of these three numbers and c is a positive real number then let $I_{c}(p / q)$ be the interval

$$
\left[\frac{p}{q}-\frac{1}{c q^{2}}, \frac{p}{q}+\frac{1}{c q^{2}}\right]
$$

We want to find the largest value of c so that the three intervals $I_{c}(r / s)$, $I_{c}(l / m)$ and $I_{c}(u / v)$ completely cover the interval

$$
I=\left[\frac{r}{s}, \frac{u}{v}\right] .
$$

Note that $I_{c}(r / s)$ intersects $I_{c}(u / v)$ if

$$
\frac{r}{s}+\frac{1}{c s^{2}} \geq \frac{u}{v}-\frac{1}{c v^{2}}
$$

Rearranging, this gives

$$
\frac{1}{c}\left(\frac{1}{s^{2}}+\frac{1}{v^{2}}\right) \geq \frac{u}{v}-\frac{r}{s}=\frac{1}{v s},
$$

so that

$$
c \leq \frac{v}{s}+\frac{s}{v} .
$$

If we let

$$
f(t)=t+\frac{1}{t}
$$

then

$$
c \leq f\left(\frac{v}{s}\right) .
$$

By a similar analysis, $I_{c}(r / s)$ and $I_{c}(l / m)$ intersect if

$$
c \leq f\left(\frac{m}{s}\right)=f\left(1+\frac{v}{s}\right) .
$$

Consider the problem of trying to cover the left-hand portion

$$
\left[\frac{r}{s}, \frac{l}{m}\right]
$$

of the interval I by the union I_{c} of the three intervals. I is covered by I_{c} if either of these intervals intersect, that is, we are done if

$$
c \leq \max \left(f\left(\frac{v}{s}\right), f\left(1+\frac{v}{s}\right)\right) .
$$

So we are definitely done if

$$
c \leq \min _{t>0} \max (f(t), f(1+t))
$$

since we are taking a minimum over values that include

$$
t=\frac{v}{s} .
$$

The minimum occurs for that value t_{0} of t for which $f(t)=f(1+t)$. This gives the equation

$$
t+\frac{1}{t}=t+1+\frac{1}{1+t}
$$

Cancelling the t and cross-multiplying, it follows that

$$
1+t=t(1+t)+t
$$

Thus

$$
t^{2}+t-1=0
$$

The positive root of this equation is

$$
t_{0}=\frac{\sqrt{5}-1}{2}
$$

It follows that

$$
c_{0}=\sqrt{5}
$$

By symmetry the right-hand portion

$$
\left[\frac{l}{m}, \frac{u}{v}\right]
$$

is also covered if $c \leq \sqrt{5}$.
Thus I belongs to the union I_{c} of the intervals if $c \leq \sqrt{5}$. This shows we get an inequality

$$
\left|x-\frac{p}{q}\right| \leq \frac{1}{\sqrt{5} q^{2}}
$$

As $\sqrt{5}$ is irrational, we must in fact have strict inequality.
If x is irrational the interval determined by adjacent points of \mathcal{F}_{n} to which x belongs must shrink down to x, on both sides of x. Thus we get infinitely many p / q this way.

