15. FAREY SEQUENCES

Definition 15.1. Fix a natural number n.

The **Farey sequence** of order n, denoted \mathcal{F}_n , is the set of rational numbers p/q with denominator $1 \leq q \leq n$, arranged in increasing order.

 \mathcal{F}_1 is the sequence of integers, and so on.

Lemma 15.2. If n is a natural number then

$$|\mathcal{F}_n \cap [0,1]| = 1 + \varphi(1) + \varphi(2) + \dots + \varphi(n).$$

Proof. Indeed an element of

$$\mathcal{F}_n \cap (0,1)$$

has the unique form a/b, where $2 \le b \le n$ and a is coprime to b. \Box

Definition 15.3. p/q and $r/s \in \mathcal{F}_n$ are **adjacent** if they are successive elements of the sequence \mathcal{F}_n .

Definition-Proposition 15.4.

(1) If p/q and r/s are adjacent in \mathcal{F}_n for some n then |ps-qr| = 1. (2) If |ps-qr| = 1 then p/q and r/s are adjacent in \mathcal{F}_n for

$$\max(q, s) \le n < q + s$$

and they are separated by the single element

$$\frac{(p+r)}{(q+s)} \in \mathcal{F}_{q+s},$$

called the **mediant** of p/q and r/s.

Proof. We first prove (2). Suppose that p/q and r/s are two elements of \mathcal{F}_n such that $qr - ps = \pm 1$. Possibly switching p/q and r/s we may assume that r/s > p/q and qr - ps = 1.

Consider the function

$$f: [0,\infty] \longrightarrow [p/q,r/s]$$
 given by $f(t) = \frac{p+tr}{q+ts}$.

As t increases from 0 to ∞ , f increases from p/q to r/s. Thus f is a bijection. Moreover it is clear that f(t) is rational if and only if t is rational. Thus we may assume that t = u/v, where u, v > 0 and (u, v) = 1. We have

$$f\left(\frac{u}{v}\right) = \frac{vp + ur}{vq + us}.$$

$$q(vp+ur) - p(vq+us) = u(qr-ps) = u$$

$$s(vp+ur) - r(vq+us) = v(ps-qr) = -v,$$

it follows that vp + ur is coprime to vq + us.

It follows that as u and v run over all coprime integers, f(u/v) runs over all rational numbers between p/q and r/s. Amongst all such choices, u = v = 1 gives the smallest denominator. f(1) is the mediant of p/q and r/s and for future reference note that

$$|(p+r)q - (q+s)p| = 1$$
 and $|r(q+s) - s(p+r)| = 1$.

Since $q + s > \max(q, s)$, (2) holds.

We now turn to (1). We prove this by induction on n. If n = 1 then p/q = a/1 and r/s = (a + 1)/1 so that

$$|ps - qr| = |a \cdot 1 - (a + 1) \cdot 1|$$

= 1.

Thus (1) holds when n = 1.

Now suppose that (1) holds for n. The only elements of \mathcal{F}_{n+1} not in \mathcal{F}_n are mediants of elements of \mathcal{F}_n and we have already checked (1) in this case. Thus (1) holds by induction.

Theorem 15.5 (Hurwitz). Suppose that the real number x is between two adjacent elements r/s and u/v of \mathcal{F}_n .

Then at least one of the three numbers

$$\frac{r}{s}$$
 $\frac{u}{v}$ and $\frac{l}{m} = \frac{(r+u)}{(s+v)}$

is a solution of the equation

$$\left|x - \frac{p}{q}\right| < \frac{1}{\sqrt{5}q^2}.$$

In particular if x is irrational then we may find infinitely many such p and q.

Proof. Possibly relabelling, we may assume that

$$\frac{r}{s} < \frac{l}{m} < \frac{u}{v}.$$

If p/q is one of these three numbers and c is a positive real number then let $I_c(p/q)$ be the interval

$$\left[\frac{p}{q} - \frac{1}{cq^2}, \frac{p}{q} + \frac{1}{cq^2}\right]$$

As

We want to find the largest value of c so that the three intervals $I_c(r/s)$, $I_c(l/m)$ and $I_c(u/v)$ completely cover the interval

$$I = \left[\frac{r}{s}, \frac{u}{v}\right]$$

Note that $I_c(r/s)$ intersects $I_c(u/v)$ if

$$\frac{r}{s} + \frac{1}{cs^2} \geq \frac{u}{v} - \frac{1}{cv^2}$$

Rearranging, this gives

$$\frac{1}{c}\left(\frac{1}{s^2} + \frac{1}{v^2}\right) \ge \frac{u}{v} - \frac{r}{s} = \frac{1}{vs},$$

so that

$$c \le \frac{v}{s} + \frac{s}{v}$$

If we let

$$f(t) = t + \frac{1}{t}$$

then

$$c \le f\left(\frac{v}{s}\right)$$

By a similar analysis, $I_c(r/s)$ and $I_c(l/m)$ intersect if

$$c \le f\left(\frac{m}{s}\right) = f\left(1 + \frac{v}{s}\right).$$

Consider the problem of trying to cover the left-hand portion

$$\left[\frac{r}{s}, \frac{l}{m}\right]$$

of the interval I by the union I_c of the three intervals. I is covered by I_c if either of these intervals intersect, that is, we are done if

$$c \le \max\left(f\left(\frac{v}{s}\right), f\left(1+\frac{v}{s}\right)\right).$$

So we are definitely done if

$$c \le \min_{t>0} \max\left(f\left(t\right), f\left(1+t\right)\right)$$

since we are taking a minimum over values that include

$$t = \frac{v}{s}.$$

The minimum occurs for that value t_0 of t for which f(t) = f(1+t). This gives the equation

$$t + \frac{1}{t} = t + 1 + \frac{1}{1+t}.$$

Cancelling the t and cross-multiplying, it follows that

$$1 + t = t(1 + t) + t.$$

Thus

$$t^2 + t - 1 = 0.$$

The positive root of this equation is

$$t_0 = \frac{\sqrt{5} - 1}{2}$$

It follows that

$$c_0 = \sqrt{5}.$$

By symmetry the right-hand portion

$$\left[\frac{l}{m}, \frac{u}{v}\right]$$

is also covered if $c \leq \sqrt{5}$.

Thus I belongs to the union I_c of the intervals if $c \leq \sqrt{5}$. This shows we get an inequality

$$\left|x - \frac{p}{q}\right| \le \frac{1}{\sqrt{5}q^2}.$$

As $\sqrt{5}$ is irrational, we must in fact have strict inequality.

If x is irrational the interval determined by adjacent points of \mathcal{F}_n to which x belongs must shrink down to x, on both sides of x. Thus we get infinitely many p/q this way.