
14. Diophantine approximation

Given an irrational number x we have seen that it is possible to find
infinitely many numbers p and q such that∣∣∣∣x− p

q

∣∣∣∣ < 1

q2
.

Note that this gives a way to differentiate rationals from irrationals.
We will now study how to use approximation to differentiate alge-

braic numbers from transcendental numbers.

Definition 14.1. A real number ξ is called transcendental if it is
not algebraic.

Theorem 14.2 (Liouville). If α is algebraic of degree n > 1 then there
is a constant c = c(α) > 0 such that∣∣∣∣α− p

q

∣∣∣∣ > c

qn

for every pair of integers p and q > 0.

Proof. If p and q are such that∣∣∣∣α− p

q

∣∣∣∣ > 1,

then ∣∣∣∣α− p

q

∣∣∣∣ > c

qn
,

for any c ≤ 1. Therefore we may assume that∣∣∣∣α− p

q

∣∣∣∣ ≤ 1.

In particular p/q is bounded.
Let mα(x) ∈ Q[x] be the minimal polynomial of α. By assumption

mα(x) has degree n. Multiplying through to clear denominators and
then dividing out any common factors, we may find an irreducible
polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Z[x]

such that f(α) = 0.
As f(x) is irreducible and n > 1, we have

f(p/q) 6= 0,
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for p/q ∈ Q. It follows that∣∣∣∣qnf (pq
)∣∣∣∣ = |anpn + an−1p

n−1q + · · ·+ anq
n|

≥ 1.

The mean value theorem implies that

f

(
p

q

)
= f

(
p

q

)
− f(α)

=

(
p

q
− α

)
f ′(ξ)

for some ξ between p/q and α. It follows that ξ is bounded, so that
|f ′(ξ)| is bounded from above, say by c1. There is no harm in assuming
that c1 > 1. It follows that if c = 1/c1 then∣∣∣∣α− p

q

∣∣∣∣ =
|qnf(p/q)|
qnf ′(ξ)

≥ 1

c1qn

=
c

qn
. �

Corollary 14.3. The number

ξ = 1± 1

21!
± 1

22!
± 1

23!
± · · · ± 1

2n!
± . . . ,

is transcendental, no matter how the signs are chosen.
In particular there are uncountably many transcendental numbers.

Proof. We are going to apply (14.2); it suffices to show that we can
approximate ξ very well by rational numbers.

Fix once and for all a choice of signs.
Let qn = 2(n−1)! and let

pn = qn(1± 2−1! ± 2−2! ± 2−3! ± · · · ± 2−(n−1)!).

Then pn/qn is a partial sum of the series for ξ and∣∣∣∣ξ − pn
qn

∣∣∣∣ ≤ 2−n! + 2−(n+1)! + . . . .

Note that

2(n+k)! ≥ 2n!(n+k)

≥ (2n!)k.
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Thus the series on the RHS is dominated by the geometric series

2−n! + 2−n! + (2−n!)2 + (2−n!)3 + . . . .

If we sum the geometric series we get∣∣∣∣ξ − pn
qn

∣∣∣∣ ≤ 2−n! +
2−n!

1− 2−n!

≤ 2
2−n!

1− 2−n!

≤ 4 · 2−n!

= 4 · q−nn .

Thus ξ is not algebraic of degree n > 1 by (14.2). Note that ξ is
not rational, as its base 2 expansion is not periodic, so that ξ is not
algebraic of degree n = 1. Thus ξ is transcendental. �

Definition 14.4. We say that a number ξ is Liouville if it fails the
inequality (14.2) for every n.

Let L denote the set of all Liouville numbers. (14.2) implies that
every irrational Liouville number is transcendental. (14.3) implies that
L is uncountable.

Curiously, in a completely different sense, it turns out that Liouville
numbers are quite rare. Given a set A ⊂ R, let

χA : R −→ { 0, 1}
be the indicator function of A, so that

χA(x) =

{
1 if x ∈ A
0 otherwise.

Then the area under the graph of L is zero (using the Lebesgue integral,
not the Riemann integral; put differently L has measure zero), so that
if one was to pick a real number at random the chance of picking a
Liouville number is zero. By comparison the probability of choosing a
transcendental number is one.
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