14. DIOPHANTINE APPROXIMATION

Given an irrational number  we have seen that it is possible to find
infinitely many numbers p and ¢ such that
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Note that this gives a way to differentiate rationals from irrationals.
We will now study how to use approximation to differentiate alge-
braic numbers from transcendental numbers.

Definition 14.1. A real number & is called transcendental if it is
not algebraic.

Theorem 14.2 (Liouville). If « is algebraic of degree n > 1 then there
is a constant ¢ = c(«) > 0 such that
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for every pair of integers p and q > 0.
Proof. If p and q are such that
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for any ¢ < 1. Therefore we may assume that

oz—E < 1.
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In particular p/q is bounded.

Let mq(x) € Q[z] be the minimal polynomial of a. By assumption
meq(x) has degree n. Multiplying through to clear denominators and
then dividing out any common factors, we may find an irreducible
polynomial

f(@) = an2™ + an12™ '+ -+ a1z + ag € Z[x]

such that f(a) =0.
As f(z) is irreducible and n > 1, we have

f(p/q) # 0,
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for p/q € Q. Tt follows that
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The mean value theorem implies that
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for some £ between p/q and a. It follows that ¢ is bounded, so that
| f'(£)] is bounded from above, say by ¢;. There is no harm in assuming
that ¢; > 1. It follows that if ¢ = 1/¢; then
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Corollary 14.3. The number
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15 transcendental, no matter how the signs are chosen.
In particular there are uncountably many transcendental numbers.

Proof. We are going to apply ; it suffices to show that we can
approximate & very well by rational numbers.

Fix once and for all a choice of signs.

Let ¢, = 2"~V and let

Pn=qn(1£27H 2272 4973 4. £ o7,

Then p,, /g, is a partial sum of the series for £ and
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Note that
2(n+k)! 2 2n!(n+k)
> (2n!)k.
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Thus the series on the RHS is dominated by the geometric series
27n! 4 2771! + (27n1>2 + (2711!)3 4+

If we sum the geometric series we get
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Thus ¢ is not algebraic of degree n > 1 by ([14.2). Note that £ is
not rational, as its base 2 expansion is not periodic, so that £ is not
algebraic of degree n = 1. Thus £ is transcendental. O

Definition 14.4. We say that a number & is Liouwville if it fails the
inequality (14.2) for every n.

Let L denote the set of all Liouville numbers. (14.2) implies that
every irrational Liouville number is transcendental. implies that
L is uncountable.

Curiously, in a completely different sense, it turns out that Liouville
numbers are quite rare. Given a set A C R, let

xa: R—{0,1}
be the indicator function of A, so that
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0 otherwise.

Then the area under the graph of L is zero (using the Lebesgue integral,
not the Riemann integral; put differently L has measure zero), so that
if one was to pick a real number at random the chance of picking a
Liouville number is zero. By comparison the probability of choosing a
transcendental number is one.
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