
13. Algebraic number theory

Definition 13.1. Let α ∈ C be a complex number.
We say that α is algebraic if there is a polynomial

p(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0 ∈ Q[x]

such that p(α) = 0.

Example 13.2. Any rational number is algebraic.

Indeed, p(x) = x− α ∈ Q[x] and of course p(α) = 0.

Example 13.3.
√

2 is algebraic.

Indeed p(x) = x2 − 2 ∈ Q[x] and p(
√

2) = 0. More generally,
√
d is

algebraic, as it is one of the zeroes of x2 − d.

Example 13.4. i is algebraic.

Indeed i is a zero of x2+1 ∈ Q[x]. Perhaps not surprisingly the more
complicated p(x), the more complicated α. However if α is a zero of
p(x) then α is a zero of p(x)q(x) for any polynomial q(x).

Definition-Lemma 13.5. Let α ∈ C be algebraic.
The minimal polynomial of α, denoted mα(x) ∈ Q[x], is the

smallest degree polynomial such that α is a zero of mα(x).
The minimal polynomial is irreducible and it divides any other poly-

nomial for which α is a zero.
The degree of α is the degree of mα(x).

Proof. If p(α) = 0 and p(x) = q(x)r(x) then either q(α) = 0 or r(α) =
0.

It is therefore clear that the minimal polynomial is irreducible. Sup-
pose that p(α) = 0. We may write

p(x) = q(x)mα(x) + r(x),

where either r(x) = 0 or the degree of r(x) is less than the degree of
mα(x).

We have

0 = p(α)

= q(α)mα(α) + r(α)

= r(α).

As r(α) = 0 and mα(x) is the minimal polynomial, it follows that
r(x) = 0, so that mα(x) divides p(x). �
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Rational numbers have degree one and
√

2 has degree two.
It is not hard to see that the collection of all polynomials in α is a

subring of the field of all complex numbers. It is denoted Q[α]. For
example Z[i] the Gausian integers (note that i2 = −1) and the ring

Z[
√
d] behind Pell’s equation

Theorem 13.6. If α is an algebraic number then

Q[α] = Q(α)

is a field and not just a ring.
It is generated as a vector space over Q by the powers of α up to

n− 1; in particular it is finite dimensional over Q.
Further,

Q[α] =
Q[x]

〈mα(x)〉
.

Proof. Define a ring homomorphism

Q[x] −→ Q[α] by the rule x −→ α.

This map is clearly surjective. The kernel is the set of all polynomials
which have α as a zero. We have already seen that this is the set of all
multiples of mα(x). This gives the isomorphism.

To show that

Q[α] = Q(α)

we have to show that the LHS is a field, that is, we have to show that
every non-zero element of Q[α] has an inverse. We are given f(x) ∈
Q[x] and we want to construct the inverse modulo mα(x). mα(x) is
irreducible and does not divide f(x). It follows that we may find a(x)
and b(x) such that

1 = a(x)f(x) + b(x)mα(x).

But then a(x) is the inverse of f(x), modulo mα(x).
We check that 1, α, α2, . . . , αn−1 are a basis for Q[α]. If they were

dependent we could find λ0, λ1, . . . , λn−1 such that

λ0 + λ1α + λ2α
2 + · · ·+ λn−1αn−1 = 0.

If we put

f(x) = λ0 + λ1x+ λ2x
2 + · · ·+ λn−1xn−1,

then f(x) is a polynomial with rational coefficients. As f(α) = 0 and
f(x) has smaller degree than mα(x) it follows that f(x) = 0. But then
λi = 0 for 0 ≤ i ≤ n − 1. It follows that 1, α, α2, . . . , αn−1 are
independent.
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We now check they span. It is clear that all of the powers span and
so we just need to check that we can get every power of α. So we just
need to check that if m ≥ n then we can express αm in terms of lower
powers of α. But this is clear. As

mα(α) = 0,

αn is a linear combination of lower powers of α. Multiplying through
by αm−n, we express αm in terms of lower powers. �

It is also possible to define the norm of α:

Definition 13.7. If α ∈ C is algebraic then the norm of α, denoted
N(α), is (−1)na0, where a0 is the constant term of mα(x).

Note that the norm of α is the product of the roots of mα(x). For
example, 3

√
2 is algebraic and its norm is 2, as m 3√2(x) = x3 − 2.

Perhaps the most interesting issue is to decide what should be the
integers in the field Q(α). It cannot be Q[α], since this is the whole
field.

Definition 13.8. α ∈ C is called an algebraic integer if α is alge-
braic and mα(x) ∈ Z[x].

It is a standard result of abstract algebra that the set of all algebraic
integers is a ring, so that the sum and product of two algebraic integers
is an algebraic integer. So if α is an algebraic integer then the ring
generated by Z[α] is a subring of Q(α) consisting of algebraic integers.

One subtle issue is that there might be more algebraic integers. For
example √

2 /∈ Z[2
√

2] and yet
√

2 ∈ Q(
√

2).

A much more interesting example is given by

β =
1

2
(1 +

√
5).

Define

β̄ =
1

2
(1−

√
5).

Then

β + β̄ = 1 and ββ̄ = −1.

Thus β is a root of

x2 − x− 1 = 0,

so that β is an algebraic integer.
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Definition-Lemma 13.9. A field Q ⊂ F ⊂ R such that F/Q is a
finite dimensional vector space is called a number field. The set of
all algebraic integers in F , denoted OF , is called a number ring.

A unit ε is an invertible element of OF . ε ∈ OF is a unit if and
only if N(ε) = ±1.

Proof. If
xn + an−1x

n−1 + an−2x
n−2 + · · ·+ a1x+ a0

is the minimal polynomial of ε then

εn + an−1ε
n−1 + an−2ε

n−2 + · · ·+ a1ε+ a0 = 0.

Dividing through by εn gives

1 + an−1(ε)
−1 + an−2(ε)

−2 + · · ·+ a1ε
1−n + a0(ε)

−n = 0.

Thus
xn +

a1
a0
xn−1 +

a2
a0
xn−2 + · · ·+ an−1

a0
x+

an
a0
.

is a monic polynomial and 1/ε is a root. It is not hard to see that this
monic polynomial is irreducible and so it has integer coefficients if and
only if a0 = ±1. But N(ε) = ±a0. �

As with any integral domain, one can define divides, associates, ir-
reducible and prime. If α and β ∈ OF then α divides β if we can find
γ ∈ OF suhc that β = αγ. α and β are associates if α divides β and β
divides α. This is the same as to say α = βε, where ε is a unit.

Usually irreducible is defined to mean that one cannot factor any-
more and prime is defined to mean that if one divides a product then
one divides one of the factors. Unfortunately the definition of prime in
a number ring is the same as irreducible.
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