
12. Units

Suppose that the components of α ∈ Z[
√
d] are positive. Then α > 1.

The four elements of Z[
√
d] with components equal to the components

of α up to sign are

α, ᾱ, −ᾱ, and − α.
If in addition N(α) = 1 then

αᾱ = 1,

so that the numbers above are

α,
1

α
, − 1

α
, and − α.

Note that the first is bigger than 1, the second is smaller than one and
bigger than zero, the last is smaller than −1 and the third is between
−1 and 0. In particular these numbers are arranged largest to smallest
and the signs of the components of α correspond to the size of α. In
particular, solutions with positive components correspond to elements
of Z[

√
d] bigger than one.

Definition-Lemma 12.1. The solutions α to

N(α) = 1,

are a subgroup G1 of the non-zero real numbers under multiplication.

Proof. 1 ∈ G1 (and in fact we already proved that G1 contains a non-
trivial element) so that G1 is non-empty. If α and β ∈ G1 then

N(αβ) = N(α)N(β)

= 1,

so that αβ ∈ G1. Similarly

N(ᾱ) = N(α)

= 1,

so that
1

α
= ᾱ ∈ G1. �

Definition 12.2. We call δ ∈ G1 the fundamental solution if the
components of δ are positive and δ is minimal with these properties.

Theorem 12.3. The map

φ : Z× Z2 −→ G1 given by (n, e) −→ eδn,

where Z2 = {±1 }, is an isomorphism of groups.
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Proof. It is clear that φ is a group homomorphism and the kernel is
trivial.

We have already seen that if α ∈ G1, α 6= 1, then one of ±α±1 has all
of its components positive. Hence it suffices to show that if α ∈ G1 and
all of the components of α are positive then α = δn for some natural
number n.

Since α ∈ G1 has positive components it follows that δ ≤ α by
minimality of δ. There is a unique natural number n such that

δn ≤ α < δn+1.

Let
β =

α

δn
∈ G1.

Then 1 ≤ β < δ and so β = 1 by minimality of δ. But then α = δn. �

We also want to consider three other special cases of Pell’s equation.
Let E(k) denote all solutions to

x2 − dy2 = k.

Proposition 12.4. Suppose that E(−1) is non-empty. Let γ ∈ E(−1)
be minimal with positive coefficients.

Then δ = γ2 and the elements of E(−1) are ±γδn, n ∈ Z. In fact
G−1 = E(1) ∪ E(−1) is a subgroup of the group of all non-zero real
numbers, G1 = E(1) is a normal subgroup of index 2 and E(−1) is the
other coset.

Proof. We have

N(γ2) = N(γ)N(γ)

= 1,

so that γ2 ∈ G1. As γ2 has positive coefficients it follows that 1 < δ ≤
γ2, by minimality of δ. As

1

γ
= −γ̄,

it follows that
γ−1 < −δγ̄ ≤ γ.

Let β = −δγ̄. Then

N(β) = N(−1)N(δ)N(γ)

= −1,

so that β ∈ E(−1). In particular β 6= 1.
There are two possibilities for where β lies:

γ−1 < β ≤ 1 and 1 < β ≤ γ.
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The former inequality implies that

1 ≥ β−1 < γ.

By minimality of γ this cannot happen and in the latter inequality we
must have equality, so that β = γ and so δ = γ2.

Note that G−1 is non-empty and closed under multiplication and in-
verses. Therefore it is a subgroup of the group of non-zero real numbers
under multiplication. If α ∈ E(−1) then

N(γα) = N(γ)N(α)

= (−1)2

= 1.

Thus γα ∈ E(1) = G1 and so γα = ±δn. But then α = ±γδn. �

In fact the map

φ : Z× Z2 −→ G−1 given by (n, e) −→ eγn,

where Z2 = {±1 }, is an isomorphism of groups.
Note that E(4) is non-empty. Indeed, if β ∈ E(1)

N(2β) = N(2)N(β)

= 4.

However, not every element of E(4) has to be of this form. For
example,

32 − 5 · 12 = 4,

so that

3 +
√

5 ∈ Z[
√

5],

and yet the components are odd.

Proposition 12.5. If ζ ∈ E(4) is minimal subject to ζ > 1 then

E(4) = {±2

(
ζ

2

)n

|n ∈ Z }.

If E(−4) is non-empty and η ∈ E(−4) is minimal subject to η > 1
then ζ = η2 and

E(−4) = { η
(
ζ

2

)n

|n ∈ Z }.

Proof. Suppose that

x2 − dy2 = 4.

As d is square-free, it follows that x and y have the same parity (odd

versus even). Thus each solution looks like a(1 +
√
d) mod 2, where
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a = 0 or 1. If there is a solution with a = 1 then d is odd. Anyway, if
we are given α and β ∈ E(4) then we may write

α = a(1 +
√
d) and β = b(1 +

√
d) mod 2,

where ab = 0 or 1. In this case

αβ = ab(d+ 1 + 2
√
d) mod 2.

By what we just said, ab(d+ 1) ≡ 0 mod 2. Thus

αβ

2
= 2 · α

2
· β

2
∈ Z[
√
d]

and

N(
αβ

2
) =

1

4
N(α)N(β)

= 4,

so that
αβ

2
∈ E(4).

Thus the RHS of

E(4) = {±2

(
ζ

2

)n

|n ∈ Z }

is indeed a subset of the LHS.
The rest of the proof follows the same line of argument as (12.3) and

(12.4). �

Definition-Lemma 12.6. Define a relation ∼ on elements of E(k)
by the rule α ∼ β if there is an element γ ∈ E(1) such that α = βγ.

Then ∼ is an equivalence relation and the equivalence classes are
called classes.

Proof. Easy check. �

For example, the equation

x2 − 2y2 = 49,

has solutions 7 and 9 + 4
√

2 and one can easily see that these solutions
belong to different classes. On the other hand there are only finitely
many classes in general, and determining all of the classes is easy once
we know the fundamental solution δ.

Theorem 12.7. Every class has a representative α = u+ v
√
d with

√
k < u ≤

√
∆k,
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where

∆ =
1

2

(
1 +

δ

δ − 1
x1

)
and δ = x1 + y1

√
d is the fundamental solution.

In particular there are only finitely many classes.

Proof. Given α1 = u1 + v1
√
d ∈ E(k) we want to find α = u + v

√
d ∈

E(k) in the same class such that
√
k < u ≤

√
∆k.

As α1 and −α1 belong to the same class we may assume that u1 > 0.
In this case it simply suffices to make sure that if

u1 >
√

∆k,

then we may find α such that 0 < u < u1.
Thus we want to find α such that

u+v
√
d = (x+y

√
d)(u1+v1

√
d) 0 < u < u1 and x2−dy2 = 1.

If v1 > 0 then let

x+ y
√
d = δ−1 = x1 − y1

√
d

but if v1 < 0 then let

x+ y
√
d = δ.

Either way we have

u = u1x1 − y1|v1|d

= u1

(
x1 − y1

√
d
|v1|
√
d

u1

)

= u1

[
x1 − y1

√
d+ y1

√
d

(
1−

√
1− k

u21

)]
.

Note that for 0 < t < 1 we have

0 < 1−
√

1− t

=
t

1 +
√

1− t

<
t

2− t
.

Hence

0 < u < u1

(
δ−1 +

y1
√
dk

2u21 − k

)
.
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It is not too hard to check that if

u1 >

√
δ′y1
√
d+ 1

2
k where δ′ =

δ

δ − 1
,

then the coefficient of u1 is less than one, so that u < u1. Since

y1
√
d =

√
x21 − 1 < x1,

it follows that if u >
√

∆k then we can find a smaller solution.
As we have bounded u and u is an integer, it follows that there are

only finitely many choices for u and so only finitely many classes. �

In theory (12.7) gives a way to write down all classes. In practice
the solutions can be quite large. For the equation

x2 − 61y2 = 1

the fundamental solution has

x1 = 1, 766, 319, 049.

We will see later an efficient way to find solutions.
Linear equations and Pell’s equations are practically the only equa-

tions with infinitely many integral solutions. No curve of genus at least
two has infinitely many rational solutions; this is a famous theorem due
to Faltings. No curve of genus one has infinitely many integral solu-
tions; this is a famous theorem due to Siegel. If a curve of genus zero
has infinitely many solutions then it has a parametrisation of the form

x =
A(t)

Cn(t)
and y =

B(t)

Cn(t)
,

where A, B and C are polynomials in t with rational coefficients and
C(t) is either linear or a quadratic equation which assumes both pos-
itive and negative values, as does the polynomial t2 − d of the Pell
equation.

Note however that there is a big distrinction between the Pell equa-
tion and linear equations. The equation

ax+ by + c = 0

assymptotically has solutions which grow faster than X, in the range
0 < x < X. Pell’s equation has solutions which grow like logX.
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