
11. Pell Equation

We now turn to the problem of finding integral solutions to qua-
dratic equations in two variables. This is an order of magnitude harder
than finding integral solutions to a homogeneous quadratic equation in
three variables, equivalently to finding rational solutions to quadratic
equations in two variables.

As before, one can transform a general quadratic to a conic which is
a line, a parabola, an ellipse or a hyperbola. The line and the parabola
are easy to handle (they correspond to the case when the dependence
on at least one variable is linear). Hence we are left with an ellipse or
a hyperbola. With some work, as before we reduce to an equation of
the form

Ax2 +By2 + C = 0.

It is convenient to multiply through by A and relabel so that we get
the equation

x2 − dy2 = k,

where d, k ∈ Z and d is square-free. This equation is quite famous and
is called Pell’s equation.

If d < 0 and k > 0 then we get an ellipse. In this case just try every
integer y such that

|y| ≤
√
−k
d
,

and see when k + dy2 is a square. If d < 0 and k < 0 there are no
real solutions and so no integer solutions. If d = 1 then the equation
reduces to

(x− y)(x+ y) = k,

and solutions correspond to factorisations of k. The only really inter-
esting case is when d > 1 and d is square-free.

Note that
x2 − dy2 = (x−

√
dy)(x+

√
dy).

The factors x −
√
dy and x +

√
dy ∈ Z[

√
d]. Note that Z[

√
d] is an

integral domain (indeed it is a subring of the real numbers).

Definition-Lemma 11.1. Suppose that α = x+ y
√
d ∈ Z[

√
d]. x and

y are called the components of α.

ᾱ = x− y
√
d

is called the conjugate of α and

N(α) = αᾱ

= x2 − dy2,
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is called the norm of α.
The norm is totally multiplicative.

Proof. Suppose that α and β ∈ Z[
√
d]. We have

N(αβ) = αβ(αβ)

= αβᾱβ̄

= αᾱββ̄

= N(α)N(β). �

Observe that a solution to Pell’s equation corresponds to α = x +
y
√
d ∈ Z[

√
d] such that N(α) = k. Note also that since

√
d is irrational,

x1 + y1
√
d = x2 + y2

√
d if and only if x1 = x2, y1 = y2.

Pick an integer m and consider what happens if we reduce modulo m,
meaning we reduce the components modulo m. It is straightforward
to check that we get an equivalence relation this way. There are m
choices for the residue class of x and m choices for the residue class of
y, making m2 choices in total, so that there are m2 equivalence classes.
This equivalence relation respects addition and multiplication.

Consider solutions to Pell’s equation with x and y positive. If we
have a solution then

x− y
√
d =

k

x+ y
√
d
.

Suppose that there are infinitely many such solutions. Then x and y
are going to infinity and the expression above is going to zero.

It follows that the ratio x/y gets closer to
√
d and we get better and

better approximations of
√
d. In fact if

x

y
≈
√
d then x+ y

√
d ≈ 2y

√
d

and so if we have a solution to Pell’s equation then∣∣∣∣√d− x

y

∣∣∣∣ ≈ |k|
y2(2
√
d)
.

This is quite striking and it is not at all clear that such close approxi-
mations actually exist.

In fact we have the following general result:

Theorem 11.2. If ξ is a real number and t is a natural number then
there are integers x and y such that

|yξ − x| < 1

t
where 1 ≤ y ≤ t.
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Proof. Consider the fractional parts of the multiples of ξ,

0, { ξ }, { 2 · ξ }, . . . , { t · ξ }.
There are t + 1 such numbers and they belong to the interval [0, 1).
Divide this interval into t equal parts in the obvious way,

[0, 1/t), [1/t, 2/t), . . . , [(t− 1)/t, 1).

By the pigeonhole principle two of the fractional parts must land in
the same interval. Therefore

|{ j · ξ } − { i · ξ }| < 1

t
,

where 0 ≤ i < j ≤ t. But

i · ξ = xi · ξy+ { i · ξ },
so that

yξ − x = (j − i)ξ − x
= (xj · ξy− xi · ξy)− x+ { j · ξ } − { i · ξ }
= { j · ξ } − { i · ξ },

where

y = j − i > 0 and x = xj · ξy− xi · ξy ∈ Z. �

Corollary 11.3. If ξ is irrational then the inequality

|x− yξ| < 1

y

has infinitely many solutions.

Proof. Suppose we have finitely many solutions, (xi, yi), 1 ≤ i ≤ k,
where yi > 0. We may assume that they are ordered worse to best, in
the sense that

|xi − yiξ| > |xj − yjξ| if and only if i < j.

As ξ is irrational

|xk − ykξ| > 0.

Therefore we may find t ∈ N such that

|xk − ykξ| >
1

t
.

By (11.2) we may find (x, y)

|x− yξ| < 1

t
where 1 ≤ y ≤ t.
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It follows that (x, y) 6= (xk, yk). On the other hand as y ≤ t

|x− yξ| < 1

y
. �

Theorem 11.4. There is an integer k, with

|k| < 1 + 2
√
d,

such that Pell’s equation has infinitely many solutions.

Proof. Pick a solution (x, y) to

|x− y
√
d| < 1

y
.

We have

|x+ y
√
d| = |x− y

√
d+ 2y

√
d|

≤ |x− y
√
d|+ 2y

√
d

<
1

y
+ 2y
√
d

≤ (1 + 2
√
d)y.

It follows that

|x2 − y2d| = |x− y
√
d| · |x+ y

√
d|

<
1

y
(1 + 2

√
d)y

< 1 + 2
√
d.

Now use the fact that there are infinitely many choices of (x, y) but only

finitely many integers whose absolute value is less than 1 + 2
√
d. �

Theorem 11.5. If d > 1 is square-free then there are integers x and
y 6= 0 such that

x2 − dy2 = 1.

Proof. Pick a natural number k such that one of the equations

N(α) = ±k

has infinitely many solutions α ∈ Z[
√
d]. As there are only finitely

many residue classes modulo k, we can find three solutions with the
same residue class.

Therefore we can find α1 and α2 ∈ Z[
√
d] with

N(α1) = N(α2) = ±k, α1 ≡ α2 mod k but α1 6= ±α2.
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It follows that

α1ᾱ2 ≡ α2ᾱ2

≡ 0 mod k,

so that

β =
α1ᾱ2

k
∈ Z[
√
d].

Observe that

N(β) = ββ̄

=
α1ᾱ2 · ᾱ1α2

k2

=
α1ᾱ1 · α2ᾱ2

k2

=
N(α1)N(α2)

k2

= 1.

If β = x+ y
√
d then we have

x2 − dy2 = 1.

If y = 0 then x± 1 and so β = ±1. This would imply that

α1ᾱ2 = ±k = ±α1ᾱ1.

Cancelling the α1 gives

ᾱ2 = ᾱ1 so that α1 = ±α2,

a contradiction. �
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