
10. p-adic numbers: II

So far we have just looked at the p-adic integers from the algebraic
point of view. But one reason the reals are so interesting is that there
is a notion of two reals being close together. We think of the sequence
of approximations 1, 3/2 = 1.5, 17/12 = 1.4166 . . . as getting close to
the true answer of

√
2. If we consider the p-adic integers 3, 3 + 1 · 7,

3 + 1 · 7 + 2 · 72 + 6 · 73, we have to consider 98 = 2 · 72 as being smaller
than 7 = 1 · 7 and 2058 = 6 · 73 as being smaller than 98 = 2 · 72.

Definition 10.1. If p is a prime and n ∈ Z is an integer then νp(n) = e
is called the p-adic valuation, where n = pem and (p,m) = 1.

We have ν7(3) = 0, ν7(7) = 1, ν7(98) = 2, ν7(2058) = 3. In fact
n ∈ Z is small p-adically, if νp(n) is large. This suggests

Definition 10.2. If p is a prime and n ∈ Z is a non-zero integer then
the p-adic absolute value is

|n|p =
1

pνp(n)
.

By convention |0|p = 0. Note that the p-adic absolute value shares
many of the properties of the ordinary absolute value.

(i) It is a function
Z −→ Q.

(ii) |n|p ≥ 0 with equality if and only if n = 0.
(iii)

|ab|p = |a|p · |b|p.
(iv)

|a+ b|p ≤ |a|p + |b|p.
In fact the p-adic absolute value satisfies a much stronger property

than (iv), namely:

(v)
|a+ b|p ≤ max(|a|p, |b|p),

with equality unless |a|p = |b|p.
In fact one just needs to check that

νp(a+ b) ≥ min(νp(a), νp(b))

with equality unless νp(a) = νp(b). But this follows from basic property
of divisibility.

We can extend all of this from the integers to the rationals. It suffices
to define the valuation, and this is easy:

νp(a/b) = νp(a)− νp(b).
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We may use the p-adic absolute value to give an alternative con-
struction of the p-adic numbers.

Definition 10.3. Fix a prime p. Let a1, a2, . . . be a sequence of rational
numbers. We say that the sequence is a Cauchy sequence if given
any ε > 0 there is an n0 such that for all m and n > n0 we have

|an − am|p < ε.

We say that a Cauchy sequence is a null sequence if given any ε > 0
there is an n0 such that for all n > n0 we have

|an|p < ε.

Note that the set of all sequences is a ring, with pointwise addition
and multiplication.

Lemma 10.4. The set of all Cauchy sequences is a subring R of the
ring of all sequences.

Proof. We just have to check that the sum and product of two Cauchy
sequences is a Cauchy sequence. �

Lemma 10.5. The set I of all null sequences is an ideal in R.

Proof. Let a1, a2, . . . and b1, b2, . . . be two Cauchy sequences. We have
to check

(1) If a1, a2, . . . and b1, b2, . . . are null sequences then so is their
sum.

(2) If a1, a2, . . . is a null sequence then the product of a1, a2, . . .
and b1, b2, . . . is a null sequence. �

Definition-Lemma 10.6. We say that two Cauchy sequences a1, a2, . . .
and b1, b2, . . . are equivalent, denoted a1, a2, . . . ∼ b1, b2, . . . , if the dif-
ference c1, c2, . . . is a null sequence.
∼ is an equivalence relation. The set of all equivalence classes is

denoted Qp.

Proof. This can be checked directly. In fact two Cauchy sequences are
equivalent if and only if they define the same left coset of I. �

Theorem 10.7. Qp is a field which contains Q.
Moreover Qp is isomorphic to the ring Qp we constructed in lecture

9.

Proof. Qp is the quotient ring R/I. It is not hard to check that every
non-zero element is invertible. The characteristic is zero and every field
of characteristic zero contains Q.
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There is a natural map

Qp −→ Qp

which sends the p-adic integer

β = a0 + a1p+ a2p
2 + a3p

3 + . . . ,

where 0 ≤ ai < p are integers, to the equivalence class generated by
the sequence

a0, a0+a1p, a0+a1p+a2p
2, . . . , a0+a1p+a2p

2+ · · ·+akpk, . . . .

It is not hard to see that the sequence we have written down is a Cauchy
sequence and that the map is a ring homomorphism. The key point
is to check the map is surjective. Given an arbitrary Cauchy sequence
α1, α2, . . . we have to construct β ∈ Qp with the property that its image
is equivalent to α1, α2, . . . .

If α1, α2, . . . is a null sequence, we may take β = 0. Therefore we
may assume that α1, α2, . . . is not a null sequence. In particular we
may assume that only finitely many αm = 0. Possibly passing to a tail
of the sequence, we may assume that αm 6= 0 for all m.

As αn is a rational number, we may write

αn = pen
bn
cn
,

where bn and cn are coprime integers, coprime to p. Our goal is to first
reduce to the case when cn = 1.

To say that we have a Cauchy sequence implies that given k we may
find n0 such that if m and n > n0 then

|αm − αn|p <
1

pk
.

In particular if we take k = 0 it follows that en is bounded from below,
so that the minimum exists. en is bounded from above, as we don’t
have a null sequence. It follows that there is a smallest integer N such
that en = N for infinitely many n. If we throw out the finitely many n
such that en < N we may assume that en ≥ N for all n. Let e be the
largest exponent and let f = e−N ≥ 0 be the difference.

As cn is coprime to p we may pick an integer fn such that

bn − cnfn ≡ 0 mod pn.
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Let gn = pen−Nfn ∈ Z. In this case∣∣αn − pNgn∣∣p =

∣∣∣∣pen bncn − penfn
∣∣∣∣
p

=

∣∣∣∣pen (bncn − fn
)∣∣∣∣

p

=
1

pen

∣∣∣∣bncn − fn
∣∣∣∣
p

=
1

pen+n

≤ 1

pN+n
.

It follows that the Cauchy sequences α1, α2, . . . and pNg1, p
Ng2, . . .

have the same limit. Replacing αn by pNgn we may assume that cn = 1.
Replacing αm by p−Nαn we may assume αn is an integer. We will
construct a p-adic integer

β = a0 + a1p+ a2p
2 + a3p

3 + . . . ,

where 0 ≤ ai < p are integers, whose image is the Cauchy sequence
α1, α2, . . . . As

|αm − αn| <
1

pk
.

the difference is divisible by pk so that

αm = a0 + a1p+ · · ·+ akp
k + α′m,

where the coefficients a0a1 . . . ak don’t depend on m and α′m ∈ Z is
divisible by pk. This defines β and it is clear that the image of β is the
Cauchy sequence α1, α2, . . . . �

In the course of the proof of (10.7) we established that every element
of Qp has a unique representation in the form

α = pN(a0 + a1p+ a2p
2 + a3p

3 + . . . ).

In fact this allows us to extend the p-adic absolute value to the whole
of Qp,

νp(α) = N and |α| = 1

pN
.

If νp(α) ≥ 0 then we say that we have a p-adic integer.
Given the rational numbers Q we now have more than one way to

complete Q. If we use the usual absolute value, we get the real numbers
R, which we can either think of using their decimal expansion, or as
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equivalence classes of Cauchy sequences. If we use a p-adic absolute
value, we get the p-adic numbers Q+ p which we can think of either as
a p-adic integer, multiplied by a power of p, or as equivalence classes
of Cauchy sequences.

All of these fields give information about the rational numbers. One
beautiful result is that the product of all of the absolute values is one:

|a|
∏
p

|a|p = 1.

Another is the Hasse-Minkowski principle. Consider the problem of
trying to solve a a Diophantine equation

F (x1, x2, . . . , xn) = 0.

Here we are looking for integer solutions. If there is an integer solution
then there must be a real solution and a p-adic integer solution. Con-
versely, if there is no real solution or no p-adic integer solution then
there is no integer solution.

Sometimes, we can reverse this implication. For example, the homo-
geneous quadratic equation∑

i≤j

aijxixj = 0

has a non-trivial integer solution, if and only if it has a real solution
and p-adic solutions for all primes p.

In fact Legendre’s theorem is one particular case of this. Part of the
hypothesis for Legendre’s theorem is that there is a real solution. The
other implies that there is a solution modulo p. If p is odd, we can use
the method of Newton Raphson to get a p-adic solution. If p = 2 the
situation is more complicated and a little bit more work is needed.
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