
1. Solutions to homogeneous linear congruences

The focus of Math 104C will be the study of quadratics.
The first problem we will consider is representation of integers as

sums of squares. We start with some explicit bounds on the solutions
to systems of homogeneous linear congruences.

Theorem 1.1 (Brauer-Reynolds). Let r, s and m be natural numbers,
and let λ1, λ2, . . . , λs be positive real numbers such that

λ1 < m, . . . , λs < m and λ1λ2 . . . λs > mr,

so that in particular m > 1 and r < s.
Then the r × s system of homogeneous linear congruences

s∑
j=1

aijxj ≡ 0 mod m,

where 1 ≤ i ≤ r and aij ∈ Z has a solution u1, u2, . . . , us, not all zero
modulo m, such that |ui| < λi, for 1 ≤ j ≤ s.

Proof. If we perturb λ1, λ2, . . . , λr a little bit by decreasing them, whilst
preserving the condition that

λ1λ2 . . . λs > mr,

we may assume that none of them are integers.
Let

s∑
j=1

aijxj = yi.

Suppose that
0 ≤ xj ≤ xλjy.

We get 1 + xλjy possible values for xj and since λj ≤ m these give
distinct values modulo m. Thus there are

l =
s∏

j=1

(1 + xλjy)

different s-tuples (x1, x2, . . . , xs) modulo m.
Each such s-tuple gives rise to an r-tuple (y1, y2, . . . , yr) of which

there are mr modulo m. As

l > λ1λ2 . . . λs

> mr.

we may apply the pigeonhole principle. It follows that there are two
s-tuples (x1, x2, . . . , xs) and (x′1, x

′
2, . . . , x

′
s) which are not equal modulo

m and which give rise to the same r-tuple (y1, y2, . . . , yr). As we have
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linear homogeneous equations the difference (u1 = x1 − x′1, u2 = x2 −
x′2, . . . , us = xs − x′s) is a solution of the original linear homogeneous
equations modulo m.

As (x1, x2, . . . , xs) and (x′1, x
′
2, . . . , x

′
s) are not equal modulo m it

follows that at least one uj is non-zero modulo m. Finally note that

|uj| < λj. �

Corollary 1.2 (Aubry, Thue, Vinogradov). If 1 < λ < m is a real
then for every a not divisible by m we may find x and y such that

ax ≡ y mod m

where 1 ≤ x < λ and 1 ≤ |y| ≤ m/λ.

Proof. Pick ε > 0 sufficiently small. Then 1 < (1− ε)λ < m. Moreover
as y is an integer it follows that

|y| < m

(1− ε)λ
implies |y| ≤ m

λ
.

Let

µ =
m

(1− ε)λ
.

We apply (1.1) with r = 1, s = 2, a11 = a, a12 = −1, λ1 = λ and
λ2 = µ. Note that µ < m as (1− ε)λ > 1 and

λµ = λ
m

(1− ε)λ

=
m

(1− ε)
> m.

We get u and v, not both zero modulo m, such that

au− y ≡ 0 mod m

and 0 ≤ |u| < λ, 0 ≤ |v| < µ. As we already reasoned, it follows
that 0 ≤ |v| ≤ m/λ. If one of u or v is zero modulo m then so is the
other and so we may assume that u are v are both non-zero modulo
m. Finally, possibly replacing (u, v) by (−u,−v) we may assume that
u > 0, so that 1 ≤ u < λ and 1 ≤ |v| ≤ m/λ. �

Theorem 1.3. Let p be a prime and let k be a natural number.
Suppose that either

(1) k is odd and (k, p− 1) = d > 1, or
(2) k = 2 and p ≡ 1 mod 4.
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Then there is a natural number 0 < nk <
√
p such that the equation

xk ≡ nk mod p,

has no solutions.

Proof. The hypotheses guarantee that we may find a such that

xk ≡ a mod p,

has no solutions and also that

xk ≡ −1 mod p,

has a solution.
Suppose that z is coprime to p. Then

xk ≡ z mod p

has a solution if and only if

xk ≡ az mod p

does not have a solution.
If we apply (1.2) then we get u and v such that au ≡ v mod p,

1 ≤ u <
√
p and 1 ≤ |v| ≤ √p. Note that

√
p is not an integer and

so we may replace the last inequality with a strict inequality. At least
one of u and v does not have a kth root modulo p. If it is not u and
v < 0 then replace v by −v and use the fact that −1 is a kth root. �
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