
FINAL EXAM

MATH 104C, UCSD, SPRING 18

You have three hours.

There are 9 problems, and the total number of

points is 130. Show all your work. Please make

your work as clear and easy to follow as possible.

Name:

Signature:

Student ID #:

Problem Points Score

1 30

2 15

3 15

4 10

5 10

6 10

7 20

8 10

9 10

10 10

11 10

12 10

13 10

Total 130
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1. (30pts) Give the definition of

(i) norm of an element of Z[
√
d].

If α = a+ b
√
d then

N(α) = a2 − b2d.

(ii) p-adic absolute value.

|m| = 1

pe

where pe is the largest power of p dividing m.

(iii) algebraic number of degree n.

α ∈ C is algebraic of degree n if there is a polynomial m(x) ∈ Q[x] of
degree n such that m(α) = 0 and no lower degree polynomial with the
same property.
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(iv) Farey sequence Fn.

The sequence of all rational numbers with denominator no bigger than
n.

(v) best approximation.

p/q is called a best approximation of x if

|q′x− p′| ≤ |qx− p|
for some q′ ≤ q implies that q = q′.

(vi) quadratic irrational.

a real number of degree two.
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2. (15pts) (i) Show that the set of numbers represented as the sum of

two squares is closed under multiplication.

If α = a+ bi and β = c+ di then

(a2 + b2)(c2 + d2) = N(α)N(β)

= N(αβ)

= N(ac− bd+ (bc+ adi)

= (ac− bd)2 + (bc+ ad)2.

(ii) Show that every prime ρ ∈ Z[i] divides some rational prime.

Let

ρρ̄ = N(ρ)

= n ∈ N.

Thus ρ divides n. Let
n = p1p2 . . . pk

be the prime factorisation of n.
As ρ is a prime it must divide one of the factors of n. Thus ρ divides
a prime.
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(iii) Show that (1 + i)|(a+ bi) if and only if a ≡ b mod 2.

Suppose that (1 + i)|(a + bi). If we take the norm of both sides then
we get

2 = N(1 + i)

|N(a+ bi)

= a2 + b2.

As 2 divides a2 + b2, a and b must have the same parity.
Now suppose that a and b have the same parity. If a and b are even,
so that a = 2k and b = 2l then 1 + i divides a+ bi = 2(k + li) as 1 + i
divides 2 = (1 + i)(1− i). If a and b are both odd then consider

α = (a+ bi)

= (a− 1) + (b− 1)i+ (1 + i)

= β + (1 + i).

As the components of β are even, it follows that 1+ i divides β and so
1 + i divides α.
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3. (15pts) Show that the general integral solution of the equation

x2 + y2 = z2

is of the form

x = c(a2 − b2) y = 2abc and z = c(a2 + b2),

where 2c ∈ Z.

Consider lines through (−1, 0). These have the form

y = m(x+ 1).

If we subsitute this into the equation of the circle x2 + y2 = 1 we get

x2+m2(x+1)2 = 1 so that (m2+1)x2+2m2x+(m2− 1) = 0.

One solution is x = −1 and so it follows that the other is

x =
1−m2

1 +m2
so that y =

2m

1 +m2
.

As m ranges over the rational numbers, this gives all rational solutions
of the equation x2 + y2 = 1, since if m is rational then x and y are
rational and if x and y are rational then so is the slope.
If m = a/b then

x =
a2 − b2

a2 + b2
and y =

2ab

a2 + b2
.

x/z and y/z are solutions of u2 + v2 = 1 if and only if x, y and z are
solutions of x2 + y2 = z2. Multitplying through by c(a2 + b2) to clear
denominators we get the solution

x = c(a2 − b2) y = 2abc and z = c(a2 + b2),

Note that c need not be an integer, since the original x and y need not
be in their lowest terms. However as z + x and z − x are integers, it
follows that 2c ∈ Z.
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4. (10pts) Show that if p is an odd prime and a is coprime to p then

the equation

x2 = a

has two solutions in the p-adic integers if and only if a is a quadratic

residue of p.

If
α = a0 + a1p+ a2p

2 + . . .

is a solution of x2 = a then certainly a20 ≡ a mod p so that a is a
quadratic residue modulo p.
Now suppose that a is a quadratic residue modulo p. Pick a0 so that
a20 ≡ a mod p. We will construct a sequence of integers in the range 0
to p− 1 so that

αn = a0 + a1p+ · · ·+ anp
n

is a solution modulo pn+1 by induction on n. Let f(x) = x2 − a. Then
f ′(x) = 2x. Having chosen a0, a1, . . . , an, an+1 = an + tpn+1. We have
to choose t such that

f(αn + tpn+1) ≡ f(αn) + 2tpn+1 ≡ 0 mod pn+2.

Since f(αn) is divisible by pn+1 we can always find integers 0 ≤ tp− 1
satisfying this equation. This defines an+1.
Taking the limit gives a p-adic integer. We get two different solutions,
one for each choice of a0.
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5. (10pts) Find the general solution of the equation

x2 − 2y2 = 1.

We just have to find the fundamental solution. One way to find this is
to compute the continued fraction expansion of

√
2.

√
2 = 1+

√
2− 1.

1√
2− 1

=
√
2 + 1

= 2 +
√
2− 1.

Thus √
2 = [1; 2].

The convergents are
1

1

3

2
and indeed

32 − 22 · 2 = 1.

Thus the fundamental solution is

δ = 3 + 2
√
2.

One can also find this solution by trial and error.
It follows that the general solution is

±(3 + 2
√
2)n,

where n is an integer.
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6. (10pts) If δ is the fundamental solution of the equation

x2 − dy2 = 1

then show that every solution has the form ±δn.

Let α be a non-trivial solution of

x2 − dy2 = 1.

Note that
α ᾱ − ᾱ and − α

are also solutions. Replacing α by one of these four solutions, we may
assume that the coefficients of α are positive and it suffices to find a
natural number n such that

α = δn.

Note that δ ≤ α by minimality of δ. Let n be the largest natural
number such that

δn ≤ α < δn+1.

Let
β =

α

δn
.

By assumption
1 ≤ β < δ.

We have

N(β) = N(α)N(δ−n)

= 1.

Thus β is also a solution of

x2 − dy2 = 1.

It follows that β = 1 by minimality of δ. But then

α = δn.
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7. (20pts) (i) If |ps− qr| = 1 then p/q and r/s are adjacent in Fn for

max(q, s) ≤ n < q + s

and they are separated by the single element (p+ r)/(q + s) in Fq+s.

We may assume that p/q < r/s so that qr − ps = 1. Let

f : [0,∞] −→
[

p

q
,
r

s

]

given by f(t) =
p+ tr

q + ts
.

Then f is a monotonic increasing function, so that f is a bijection. It
is clear that f induces a bijection between the rational points of both
intervals. Let t = u/v. Then

f
(u

v

)

=
pv + ur

qv + us
.

As

q(vp+ ur)− p(vq + us) = u(qr − ps) = u

s(vp+ ur)− r(vq + us) = v(ps− qr) = −v,

it follows that vp+ ur is coprime to vq + us, thus f(u/v) is expressed
in its lowest terms.
It is then clear that the rational number between p/q and r/s with the
smallest denominator is given by u = v = 1.
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(ii) If p/q and r/s are adjacent in Fn for some n then |ps− qr| = 1.

We prove this by induction on n. If n = 1 then q = s = 1 and p and
r = p± 1 are adjacent integers. The result is clear in this case.
If we go from n to n+1 we just need to check the result for the integers
we just added. If p/q and r/s are adjacent in Fn then we can only add

p+ r

q + s

between them in Fn. We have

|(p+ r)q − (q + s)p| = 1 and |r(q + s)− s(p+ r)| = 1,

and this completes the induction.
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8. (10pts) Find all of the best approximations of 339/62.

We have

ξ =
339

62

= 5 +
29

62
.

Thus a0 = 5 and

ξ1 =
62

29

= 2 +
4

29
.

Thus a2 = 2 and

ξ2 =
29

4

= 7 +
1

4
.

Thus a2 = 7 and a3 = 4. It follows that

339

62
= [5; 2, 7, 4].

The convergents are:

5

1

11

2

82

15
and

339

62
and these are the best approximations.
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9. (10pts) Show that if ξ and η have the same initial partial quotients

a0, a1, a2, . . . , an and ξ < θ < η then θ has the same initial partial
quotients.

As ξ < θ < η, it follows that

a0 = xξy ≤ xθy ≤ xηy = a0.

Thus
a0 = xθy.

Moreover, it then follows that

{ ξ } < { θ } < { η }.
Taking reciprocals

η1 < θ1 < ξ1.

As the partial quotients of η1 and ξ1 are a1, a2, . . . , an, we are done by
induction on n.
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Bonus Challenge Problems

10. (10pts) Describe all solutions of x2 − dy2 = 4.

See Propopsition 12.5.
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11. (10pts) Show that if ξ is irrational then there are infinitely many

rational numbers p/q such that
∣

∣

∣

∣

ξ − p

q

∣

∣

∣

∣

<
1√
5q2

.

See the proof of Theorem 15.5.
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12. (10pts) Show that ξ is a quadratic irrational if and only if its

continued fraction is eventually periodic.

See the proof of Theorem 19.1.
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13. (10pts) Prove Legendre’s theorem.

See the proof of Theorem 7.1.
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