
MODEL ANSWERS TO THE EIGHTH HOMEWORK

5.1.1.

p/q 3 5 7 11 13 17 19 23
3 0 -1 1 -1 1 -1 1 -1
5 -1 0 -1 1 -1 -1 1 -1
7 -1 -1 0 1 -1 -1 -1 1
11 1 1 -1 0 -1 -1 -1 1
13 1 -1 -1 -1 0 1 -1 1
17 -1 -1 -1 -1 1 0 1 -1
19 -1 1 1 1 -1 1 0 1
23 1 -1 -1 -1 1 -1 -1 0

Looking at the table, (
p

q

)
=

(
q

p

)
when the pair p, q is one of

3, 5; 3, 13; 3, 17; 5, 7; 5, 11; 5, 13; 5, 17; 5, 19; 5, 23; 7, 13;

7, 17; 11, 13; 11, 17; 13, 17; 13, 19; 13, 23; 17, 19; 17, 23.

The rule is given by quadratic reciprocity; we have equality unless both
p and q are congruent to 3 modulo 4.
5.1.2. If the equation

x2 ≡ a mod p

has a solution then

a(p−1)/2 ≡ 1 mod p.

If p ≡ 3 mod 4 then there is an integer k such that p = 4k+ 3. In this
case

p+ 1

4
= k + 1 and

p− 1

2
= 2k + 1.

Let

b = ak+1.

We check that b is a solution of the equation

x2 ≡ a mod p.
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We have

b2 = (ak+1)2

= a2k+2

= a2k+1a

≡ a mod p.

Thus b is a solution of the equation

x2 ≡ a mod p.

It follows that ±b are both of the solutions to the equation

x2 ≡ a mod p.

5.1.3. We first factor

2272 = 2 · 1136

= 22 · 568

= 23 · 284

= 24 · 142

= 25 · 71.

As 8|2272 we have to check that 37 modulo 8 is congruent to one.

37 = 32 + 5

≡ 5 mod 8.

Thus 37 is not a quadratic residue of 2272.
5.1.5. Let a ∈ Z. Knowledge of the last n digits of a is equivalent to
determining the residue class of a modulo 10n. So we want to know
the number of solutions of

x2 = b mod 10n.

By the Chinese remainder theorem, we have to count the number of
solutions to

x2 ≡ b mod 5n and x2 ≡ b mod 2n.

As we are assuming there is a solution, the number of solutions to the
first equation is always two. The number of solutions to the second
equation is always one if n = 1, and always 2 if n = 2. If n ≥ 3 then
the number of solutions is always 4.
Thus there are 2, 4 or 8 possibilities for the last n digits, according as
n = 1, n = 2 or n ≥ 3.
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5.1.6. We want to solve the equation

x2 = x mod 103 that is x2 − x = 0 mod 103.

By the Chinese remainder theorem, we have to solve the equations

x2 − x = 0 mod 53 and x2 = x mod 23.

We first solve the equations

x2 − x = 0 mod 5 and x2 − x = 0 mod 2.

Both equations have solutions x = 0 and x = 1.
Let f(x) = x2 − x. Then f ′(x) = 2x − 1. It easy to see that all four
solutions have non-zero derivative and so all solutions are non-singular.
So we can lift all of these solutions to four solutions modulo 125 and
modulo 8.
Now x = 0 and x = 1 are always solutions, modulo any prime. So the
four solutions modulo 125 and 8 are still 0 and 1. By the Chinese re-
mainder theorem there are four solutions, one for every possible choice
of 0 and 1. Again, two of them are clear, 0 and 1 are two solutions.
But they don’t have four digits.
So we just have to solve

x = 0 mod 125x 1 mod 8

and

x = 1 mod 125x 0 mod 8.

To solve the first equation we need to find z1 so that

125z1 ≡ 1 mod 8.

This reduces to

5z1 ≡ 1 mod 8.

This has solution z1 = 5. This gives

x = 5 · 125 = 625.

To solve the first equation we need to find z2 so that

8z2 = 1 mod 125.

This has solution z2 = 47. This gives

x = 47 · 8 = 376.

5.2.1. By Gauss’s Lemma we need to count the number µ of elements
of

{−2k | 1 ≤ k ≤ p− 1

2
}
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which are equivalent modulo p to a number in the interval (−p/2, 0).
Now the numbers −2k lie in the interval (−p, 0). Therefore we just
need to count the number of integers −2k in the interval (−p/2, 0).
Now −2k > −p/2 if and only if k < p/4. Thus

µ = xp/4y.

We consider p modulo 8. We have

µ =

{
2k if p = 8k + 1 or 8k + 3

2k + 1 if p = 8k + 5 of 8k + 7.

It follows that µ is even if and only if p ≡ 1 mod 8 or p ≡ 3 mod 8 and
so (−1)µ is 1 if and only if p ≡ 1 mod 8 or p ≡ 3 mod 8. Therefore
−2 is a quadratic residue if and only if p ≡ 1 mod 8 or p ≡ 3 mod 8.
On the other hand,(

−2

p

)
=

(
−1

p

)(
2

p

)
= (−1)(p−1)/2(−1)(p

2−1)/8.

We again consider what happens modulo 8. If p = 8k+1 or 8k+5 then
the first factor is positive. If p = 8k + 1 or 8k + 7 the second factor
is positive. Thus the product is both if p ≡ 1 mod 8 or p ≡ 8k + 3
mod 8.
5.2.3. We have (

−a
p

)
=

(
−1

p

)(
a

p

)
= (−1)(p−1)/2

(
a

p

)
.

On the other hand,

(−1)(p−1)/2 =

{
1 if p = 4k + 1

−1 if p = 4k + 3.

Thus if p ≡ 1 mod 4 then a is quadratic residue if and only if −a is a
quadratic residue and p ≡ 3 mod 4 then exactly one of a and −a is a
quadratic residue.
5.2.6. Let t be the order of −4 modulo q. Then t divides q − 1 and we
want to show that t = q − 1. Now

q − 1 = 2p.

As p is prime and t divides 2p it follows that either t = 1 or t = 2 or
t = p or t = 2p. As p is odd it follows that p > 2 and so q ≥ 7. Thus
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−4 6= 1 = mod q and so t 6= 1.

(−4)2 = 16.

If this is equivalent to 1 modulo q then q|15 so that q = 3 or 5, which
we have seen is not true. Thus t 6= 2. Suppose that t = p. Then(

−4

q

)
= (−4)(q−1)/2

= (−4)p

= 1.

But (
−4

q

)
=

(
−1

q

)(
4

q

)
= (−1)(q−1)/2

(
22

q

)
= (−1)p

= −1,

as p is odd, a contradiction.
Thus t = 2p = q − 1 and −4 is a primitive root.
5.2.8. First note that as p and m are coprime, the numbers

m 2m, 3m . . . (p− 2)m and (p− 1)m

are a complete residue system. Thus
p∑
a=1

(
ma

p

)
=

p−1∑
a=1

(
ma

p

)

=

p−1∑
a=1

(
a

p

)
.

Suppose that p = 2k + 1. Then p − 1 = 2k and precisely k of the
numbers from 1 to p − 1 are quadratic residues and k of the numbers
from 1 to p− 1 are not quadratic residues.
It follows that

p−1∑
a=1

(
a

p

)
= k − k = 0.
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