MODEL ANSWERS TO THE SEVENTH HOMEWORK

3.4.2. We first find the prime factorisation of 1125,
1125 =5-225
= 5% .45
=59
=3%.5%
By the Chinese remainder theorem, it suffices to find the roots modulo
9 = 3% and modulo 125 = 53.

We start with the problem of finding roots modulo 9. We first find the
roots modulo 3. We get the equation

22=0 mod 3.

This has the single solution xqg = 0. Now we use approximation to find
all of the roots. f’(z) = 32 and so f'(z9) = 0 mod 3, so that zy is
a singular solution. But f(zo) = 0 mod 9 so that every lift of 0 is a
solution. Thus 0, 3 and 6 are the solutions to 2% —32%2+27 =0 mod 9.
We now consider the problem of finding the roots modulo 125. We first
find the roots modulo 5. We have to solve

22 4+2224+2=0 mod 5.

By trial and error we see that xqg = 1 is the only solution.
We now try to lift this to a solution modulo 25. Note that
f'(z) = 32* — 62
so that f’(xg) =2 # 0 mod 5. Thus there is a unique lift. We have to
solve the equation
5tf'(xg) = —f(xp) mod 25.
We have
flzg) =1-3+27=25=0 mod 25.

As f'(x9) # 0 mod 5 this has the unique solution ¢ = 0. Therefore
r; = 1 is also a solution modulo 25. We now lift this to a solution
modulo 125. We have to solve

This reduces to

2t =4 mod 5,
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so that ¢ = 2. Thus we take
x9=1+2-25=51.
Finally, to get the solution modulo 1125, we have to solve

=0 mod3
=51 mod 125.

This gives us
51, 51+ 3125 = 426 and 51 +6- 125 = 801.
3.4.3 If we apply Taylor’s theorem to f(z), centred at m, we get

f"(m) o (m)

flm+kf(m)) = f(m) +Ekf(m) f'(m) + & f(m)* ===+ + (kf (m))"—

= f(m)(kf'(m) + gf(m)f”(m) et %f(m)“f(")(m))-
= f(m)g(k),

where

n

9(@) = f/(m)a + - f(m)J" (m) 4 - 4+ = fm)" 7 (m),

is a polynomial with rational coefficients.

First note that since the equations f(z) =0, f(x) =1 and f(z) = —1
have finitely many solutions, we may pick m so that f(m) is neither
zero, nor a unit (that is, £1). Now if we let k = n!l for some integer [
then g(k) is an integer, since each term of the expression for g(z) is an
integer. As g(x) is not the constant polynomial we can pick k so that
g(x) is neither zero, nor a unit. Thus f(m + kf(m)) is not prime for
infinitely many integers m + kf(m).

3.4.4 We first consider the case e = 1. We have to solve

2 =a mod 2.

Let f(zr) = 2% —a. Then f'(z) = 2x. If zp = 0 then f'(xy) = 0 and
if xo = 1 then f'(x¢) = 2 = 0 modulo 2. Thus there every solution is
singular.

3.4.5 (a) We prove this by induction on e. Let aq,aq,...,as be the s
distinct non-singular solutions modulo p. Let by, bs, ..., bs be their lift
to solutions modulo p¢. We have

(b)) = f(a;) 20 mod p.

Thus b; is a non-singular solution. Thus we may lift b; to a solution ¢;

modulo pt1.
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(b) We already know that z¢ — 1 = 0 has d solutions modulo p. Let
f(x) = 2% — 1. Then f'(z) = dx?'. If q; is a solution to
¥ —1=0 mod p,

then a; # 0 so that f'(a;) # 0 mod p. By (a) we may lift each of the
d solutions to d distinct solutions modulo p°, for every e. On the other
hand, every solution modulo p® is a solution modulo p, so that there
are at most d solutions modulo p°. Thus there are exactly d solutions.
3.4.7 We prove this by induction on k. If £ = 1 then this is Wilson’s
theorem. Suppose we know the result for k¥ < p — 2. Note that

(p—k—1Dkl=k(p—k—1!(k—1)!
—(p—k)p—k—-1DYk—-1)! modp

=—(p—Fk)(k—1)!
= —(—1)* mod p
— (_1)k+1.

Thus we are done by induction on k.
3.4.8 Suppose that

f(z) = ap + a17 + agx® + - - - + a,z".
Then
flapz) = ap + a1(apx) + a2(a0x)2 + -+ ap(apx)”

= ao(1 + a1z + azapx® + - - + ayafl'a™)

— Clo(l -+ ZL’(CL1 + asapxr + - -+ + ana8_1$n_l)

= ao(1 + zg(7)),

where g(x) is a polynomial of degree n — 1. Note that g(x) # 0 as f(z)
is not constant. Suppose that py,ps,...,pr is a sequence of finitely
many primes. Let m be the product and let [ be a natural number.
Then

1+Img(lm)=1 mod m.

It follows that f(aglm) is not divisible by any of the primes p1, ps, . . ., .-
g(x) has only finitely many zeroes, so we may choose [ so that g(lm) #
0. By the fundamental theorem of arithmetic, it follows that f(aglm)
is divisible by a prime p, not belonging to the sequence pq, po, ..., Pk.
In this case f(z) =0 mod p.

3.4.10 Not quite; if p = 2 then —1 = 1 = 12 is a square.

Let’s assume that p is an odd prime. By Euler’s criterion,

(_—1> =1 if and only if (=1)P D2 =1 mod p.

p
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If p=1 mod 4 then there is an integer k£ such that p = 4k + 1. In this

case 1
p J—
P o
2 )

so that
(_1)(10*1)/2 — 1.
Therefore —1 is a square modulo p if p =1 mod 4.

If p is odd then the only other possibility is that p = 3 mod 4. In this

case there is an integer k such that p = 4k + 3. It follows that
p—1
— =2k+1
2 +h

so that
(_1)(?-1)/2 - _1.

Thus —1 is not a square modulo p if p =3 mod 4.
3.4.11 We want to prove that if

(m—1)!'=-1 mod m,
then m is a prime.
Suppose that m is composite. Then we may write m = ab, where a > 1

and b > 1. First suppose that we can choose a and b such that a < b.
Then

(m—1D=m-1)(m-2)...0+1)b-(b—1)...(a+1)-a-(a—1)...
= abk
=0 mod m,

where £ is an integer.
If m is composite and we cannot choose a # b then m = p? is the
square of a prime. Suppose that p > 2. Then

(m—=N=E"-DE*-2)...2p+1)2p)2p—1)...(p+ plp—1)...
:ka
=0 mod m,

where k is an integer. The remaining case is m = 4 = 22. In this case
(m—1)!=3!
=6
# —1 mod m =4.

Thus if
(m—1)!=-1 mod m,
then m is a prime.



