
MODEL ANSWERS TO THE SIXTH HOMEWORK

3.3.1. a) Note that 4, 21 and 25 pairwise coprime. We have to solve
three auxiliary equations

21 · 25z1 ≡ 1 mod 4

4 · 25z2 ≡ 1 mod 21

4 · 21z3 ≡ 1 mod 25.

These reduce to

z1 ≡ 1 mod 4

16z2 ≡ 1 mod 21

9z3 ≡ 1 mod 25.

Note that 64 ≡ 1 mod 21 and 126 ≡ 1 mod 25. Thus we get

z1 = 1

z2 = 4

z3 = 14.

It follows that

x = 21 · 25 · 1 · 3 + 4 · 25 · 4 · 5 + 4 · 21 · 14 · 7
= 1307 mod 4 · 21 · 25.

b) We first solve equations for y. The greatest common divisor of 3 and
12 is 3. This divides 9, so the first equation reduces to x ≡ 3 mod 4.
4 and 35 are coprime. 4 · 9 = 36 ≡ 1 mod 35. So 9 is the inverse of 4
modulo 35. The second equation reduces to x ≡ 10 mod 35. 6 and 11
are coprime. 2 · 6 = 12 ≡ 1 mod 11. Thus x ≡ 4 mod 11.
So we first have to solve the three equations

x ≡ 3 mod 4

x ≡ 10 mod 35

x ≡ 4 mod 11.

Note that 4, 35 and 11 pairwise coprime. We have to solve three
auxiliary equations

35 · 11z1 ≡ 1 mod 4

4 · 11z2 ≡ 1 mod 35

4 · 35z3 ≡ 1 mod 11.
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These reduce to

z1 ≡ 1 mod 4

9z2 ≡ 1 mod 35

8z3 ≡ 1 mod 11.

Note that 36 ≡ 1 mod 35 and 56 ≡ 1 mod 11. Thus we get

z1 = 1

z2 = 4

z3 = 7.

It follows that

x = 35 · 11 · 1 · 3 + 4 · 11 · 4 · 10 + 4 · 35 · 7 · 4
= 675 mod 4 · 35 · 11.

To find y, note that there are three numbers modulo 3 ·4 ·35 ·11 whose
residue modulo 4 · 35 · 11 is 675, namely:

675, 675 + 4 · 35 · 11 = 2215 and 675 + 2 · 4 · 35 · 11 = 3755.

(c) Note that 12 and 21 have greatest common divisor 3. Now 3 divides
4 − 1 so that the first two equations have a solution. 21 and 35 have
greatest common divisor 7. 7 divides 18 − 4 = 14 and so the second
two equations have a solution. 12 and 35 are coprime. Thus the first
and third equations have a solution.
Thus we can solve these equations. The solutions are residue classes
modulo the lowest common multiple of 12, 21 and 35, that is, 3·7·4·5 =
420.
We first solve the first and second equations. We first solve

x ≡ 1 mod 4

x ≡ 4 mod 7.

We need to solve

7z1 ≡ 1 mod 4

4z2 ≡ 1 mod 7.

We get

z1 ≡ 3 mod 4

z2 ≡ 2 mod 7.
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Thus

x = 7 · 1 · 3 + 4 · 4 · 2
≡ −7 + 4 mod 4 · 7
≡ 25 mod 4 · 7.

In fact 25 is also the solution to the original equations. Thus 25 is the
solution to the equation

x ≡ 25 mod 3 · 4 · 7.

Now we need to solve the second and third equations. We first solve

x ≡ 1 mod 3

x ≡ 3 mod 5.

We need to solve

5z1 ≡ 1 mod 3

3z2 ≡ 1 mod 5.

We get

z1 ≡ 2 mod 3

z2 ≡ 2 mod 5.

Thus

x = 5 · 1 · 2 + 3 · 3 · 2
= 13 mod 15.

Now this is not a solution to the original equations. The general solu-
tion to the equation above is y = 13 + 15t. If this is a solution to the
original equations, we want

13 + 15t ≡ 4 mod 21.

Thus

15t ≡ 12 mod 21.

Thus

5t ≡ 4 mod 7.

This has solution t = 5. Thus y = 13 + 15 · 5 = 88. This is a solution
to the original pair of equations

y ≡ 4 mod 21

y ≡ 18 mod 35.
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Finally we want to find a number y such that

y ≡ 25 mod 3 · 4 · 7
y ≡ 88 mod 3 · 5 · 7.

The general solution to the first equation is y = 25 + 56t. So we want

25 + 56t ≡ 88 mod 3 · 5 · 7.

We get

56t ≡ 63 mod 3 · 5 · 7.

Thus

8t ≡ 9 mod 3 · 5.

We get t = 3. Thus the solution is 25 + 56 · 3 = 193.
3.3.2. Let

f : Z10 −→ Z2 × Z5,

be the function given by the Chinese Remainder theorem. Then

f(0) = (0, 0)

f(1) = (1, 1)

f(2) = (0, 2)

f(3) = (1, 3)

f(4) = (0, 4)

f(5) = (1, 0)

f(6) = (0, 1)

f(7) = (1, 2)

f(8) = (0, 3)

f(9) = (1, 4).

3.3.5. Let p1, p2, . . . , pr be distinct primes, for example

2, 3, 5, . . . , pr.

Let mi = p2i . Then

m1,m2, . . . ,mr

are pairwise coprime. Let

ci = mi − i− 1,
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so that

c1 ≡ 0 mod m1

c2 ≡ −1 mod m2

c3 ≡ −2 mod m3

...
. . .

...

cr ≡ −r + 1 mod mr.

Then, by the Chinese remainder theorem, we can find a natural number
x congruent to ci, modulo mi, for every 1 ≤ i ≤ r. Note that

x ≡ 0 mod m1,

so that m1 = p21 divides x. Thus x is not square-free. But

x + 1 ≡ 0 mod m2,

so that p22 divides x + 1. Thus x + 1 is not square-free. In general

x + (i− 1) ≡ 0 mod mi,

so that p2i divides x + i = 1. Thus x + i− 1 is not square-free.
It follows that none of the r consecutive integers

x, x + 1, x + 2, . . . x + r − 1

is square-free.
3.3.7. (a) Let p be a prime dividing n. Suppose that p does not divide
b = 0 · a+ b. In this case, we take x = 0. If p does divide b then p does
not divide a. Then b + a = b + 1 · a is not divisible by p. In this case,
we take x = 1.
Let m be the product of all primes dividing n (so that m is square-free
and has the same prime factors as n). For every prime mi = pi dividing
m we have already shown that we can find ci such that

ax ≡ ci − b 6= 0 mod mi,

has a solution. By the Chinese remainder theorem, we can find x such
that all of these equations have a simultaneous solution. In this case
ax + b is coprime to every mi = pi so that ax + b is coprime to n.
(b) We have to construct an infinite sequence of integers

x1, x2, . . .

whose elements are pairwise coprime. Suppose that we have con-
structed

x1, x2, . . . , xi.
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Let n be the product of
i∏

j=1

(axi + b).

Then we can find x such that (ax + b, n) = 1. Let x = xi+1. Then
axi+1 +b is coprime to n so that it is coprime to axj +b for j ≤ i. Thus
we can construct

x1, x2, . . . , xi+1,

and so we can construct an infinite sequence.
3.3.8. We have

a · aϕ(m)−1 = aϕ(m)

≡ 1 mod m.

Thus
x = aϕ(m)−1

is a solution to the equation

ax ≡ 1 mod m.

It follows that
x = aϕ(m)−1b

is a solution to the equation

ax ≡ b mod m.

3.4.1 If p ≤ n + 1 then we are done by (3.1.1). So we may assume
that n + 1 < p. Since the difference between any n + 1 consecutive
integers is at most n, it follows that any n + 1 consecutive integers
are pairwise different modulo p. Thus the polynomial f̄(x) ∈ Zp[x],
obtained from f(x) by reduction modulo p, has at least n+ 1 roots. It
follows that f̄(x) is the zero polynomial. But then every coefficient of
f(x) is divisible by p, so that p|f(a) for every integer a.
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