MODEL ANSWERS TO THE SIXTH HOMEWORK

3.3.1. a) Note that 4, 21 and 25 pairwise coprime. We have to solve
three auxiliary equations

21-252;, =1 mod 4
4-2520=1 mod 21
4-21z3 =1 mod 25.
These reduce to
z1=1 mod4
1629 =1 mod 21
923 =1 mod 25.
Note that 64 =1 mod 21 and 126 =1 mod 25. Thus we get

21:1
2’2:4
2’3:14

It follows that
r=21-25-1-3+4-25-4-5+4-21-14-7
= 1307 mod 4-21-25.

b) We first solve equations for y. The greatest common divisor of 3 and
12 is 3. This divides 9, so the first equation reduces to x = 3 mod 4.
4 and 35 are coprime. 4-9 =36 =1 mod 35. So 9 is the inverse of 4
modulo 35. The second equation reduces to x = 10 mod 35. 6 and 11
are coprime. 2-6 =12=1 mod 11. Thus =4 mod 11.

So we first have to solve the three equations

r=3 mod4
=10 mod 35
=4 mod 11.

Note that 4, 35 and 11 pairwise coprime. We have to solve three
auxiliary equations

35-11z; =1 mod 4
4-11z2=1 mod 35
4-3523 =1 mod 11.
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These reduce to

z1=1 mod 4
920 =1 mod 35
823 =1 mod 11.

Note that 36 =1 mod 35 and 56 =1 mod 11. Thus we get

21:1
22:4
23:7.

It follows that

r=35-11-1-34+4-11-4-10+4-35-7-4
=675 mod4-35-11.

To find y, note that there are three numbers modulo 3-4-35-11 whose
residue modulo 4 - 35 - 11 is 675, namely:

675, 675+4-35-11 = 2215 and 675+2-4-35-11 = 3755.

(c) Note that 12 and 21 have greatest common divisor 3. Now 3 divides
4 — 1 so that the first two equations have a solution. 21 and 35 have
greatest common divisor 7. 7 divides 18 — 4 = 14 and so the second
two equations have a solution. 12 and 35 are coprime. Thus the first
and third equations have a solution.

Thus we can solve these equations. The solutions are residue classes
modulo the lowest common multiple of 12, 21 and 35, that is, 3-7-4-5 =
420.

We first solve the first and second equations. We first solve

=1 mod4
=4 mod 7.

We need to solve

7217=1 mod 4
429 =1 mod 7.

We get

z1=3 mod4

2z =2 mod 7.



Thus

r=7-1-3+4-4.2
=-—-74+4 mod4-7
=25 mod4-7.

In fact 25 is also the solution to the original equations. Thus 25 is the
solution to the equation

r=25 mod3-4-7.

Now we need to solve the second and third equations. We first solve

r=1 mod3

r=3 mod 5.
We need to solve

527=1 mod 3

322 =1 mod 5.
We get

z1 =2 mod 3

29 = mod 5.
Thus

r=5-1-24+3-3-2
=13 mod 15.
Now this is not a solution to the original equations. The general solu-

tion to the equation above is y = 13 + 15¢. If this is a solution to the
original equations, we want

13415t =4 mod 21.

Thus

15t =12 mod 21.
Thus

5t =4 mod 7.

This has solution t = 5. Thus y = 13 + 15 -5 = 88. This is a solution
to the original pair of equations

y=4 mod 21

y =18 mod 35.
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Finally we want to find a number y such that
y=25 mod3-4-7
y=88 mod3-5-7.
The general solution to the first equation is y = 25 4 56t. So we want
25+ 56t =88 mod 3-5-7.
We get
56t =63 mod 3-5-7.

Thus
=9 mod 3-5.

We get t = 3. Thus the solution is 25 4 56 - 3 = 193.
3.3.2. Let

f: ZlO —>Z2 X Zg),

be the function given by the Chinese Remainder theorem. Then

f(0) = (0,0)
) =(1,1)
f(2) =(0,2)
fB3)=(1,3)
f(4) =(0,4)
f(5) = (17 0)
f(6) =(0,1)
f(7) = (17 2)
f(8)=1(0,3)
f(9) = (1,4).
3.3.5. Let p1,po, ..., p, be distinct primes, for example
2,3,5,...,p,
Let m; = p?. Then

are pairwise coprime. Let

ci:mi—i—l,
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so that

¢t =0 modmy

co = —1 mod my
c3 = —2 mod ms
¢ =—r+1 modm,.

Then, by the Chinese remainder theorem, we can find a natural number
x congruent to ¢;, modulo m;, for every 1 < i <r. Note that

r=0 mod my,
so that m; = p? divides z. Thus z is not square-free. But
r+1=0 mod ms,
so that p2 divides x + 1. Thus x + 1 is not square-free. In general
r+(i—1)=0 mod m,

so that p? divides x + i = 1. Thus x + 7 — 1 is not square-free.
It follows that none of the r consecutive integers

z, r+1, T+ 2, z+r—1

is square-free.

3.3.7. (a) Let p be a prime dividing n. Suppose that p does not divide
b=0-a+0b. In this case, we take xz = 0. If p does divide b then p does
not divide a. Then b4+ a = b+ 1 - a is not divisible by p. In this case,
we take x = 1.

Let m be the product of all primes dividing n (so that m is square-free
and has the same prime factors as n). For every prime m; = p; dividing
m we have already shown that we can find ¢; such that

ar =c¢; —b#0 mod m;,

has a solution. By the Chinese remainder theorem, we can find x such
that all of these equations have a simultaneous solution. In this case
ax + b is coprime to every m; = p; so that ax + b is coprime to n.

(b) We have to construct an infinite sequence of integers

T1,T2, ...

whose elements are pairwise coprime. Suppose that we have con-
structed

T1,T9y ..., T5.
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Let n be the product of

H(axi +b).

j=1
Then we can find = such that (ax + b,n) = 1. Let z = x;31. Then
ax;+1 +b is coprime to n so that it is coprime to az; +b for j <. Thus
we can construct

T1,L2y -3 Ti41,
and so we can construct an infinite sequence.
3.3.8. We have
a - afm—1 — ge(m)
=1 mod m.
Thus

T = qfm-1
is a solution to the equation
ar =1 mod m.

It follows that
= ag?™-1p

is a solution to the equation
ar =b mod m.

3.4.1 If p < n+1 then we are done by (3.1.1). So we may assume
that n + 1 < p. Since the difference between any n 4 1 consecutive
integers is at most n, it follows that any n + 1 consecutive integers
are pairwise different modulo p. Thus the polynomial f(x) € Z,[z],
obtained from f(z) by reduction modulo p, has at least n + 1 roots. It
follows that f(z) is the zero polynomial. But then every coefficient of
f(z) is divisible by p, so that p|f(a) for every integer a.



