
MODEL ANSWERS TO THE FIFTH HOMEWORK

3.2.2 Suppose that u1 and u2 are two units. Then there are two elements
of the ring, v1 and v2, such that u1v1 = 1 = u2v2. We have

(u1v1)(u2v2) = (u1v1)(u2v2)

= 1 · 1
= 1.

Thus u1u2 is a unit. Thus the units are closed under multiplication and
there is a well-defined multiplication of units. Multiplication of units is
associative as multiplication in the ring is associative. 1 is a unit and
it plays the role of the identity. If u is a unit then there is an element
v of the ring such that uv = 1. Then u is the inverse of v in the ring,
so that v is a unit. But then v is the inverse of u in the units, so that
the units are a group.
3.2.2 Suppose that a ≡ b mod m. Then m divides a−b so that there is
an integer k such that a−b = mk. Thus a = b+mk and b = a+(−k)m.
Suppose that d divides b and d divides m. Then d divides a and so d
is a common divisor of a and m. Conversely if d divides a and m then
it divides b and so d is a common divisor of b and m. Thus a,m and
b,m have the same common divisors.
In particular they have the same greatest common divisor.
3.2.6 It is enough to show this for one common residue system. Consider

S = { r ∈ Z | −m/2 < r ≤ m/2 }

Then 1 and −1 ∈ S and 12 = (−1)2.
3.2.7 If n is odd then

(−1)n/d = −1,

for every divisor d of n. Therefore∑
d|n

(−1)n/dϕ(d) =
∑
d|n

−ϕ(d)

= −
∑
d|n

ϕ(d)

= −n.

Now suppose that n is even. Then we may write n = 2km where k ≥ 1
and m is odd. If d is a divisor of n then d = 2jc, where c is a divisor
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of m and 0 ≤ j ≤ k. Note that c is odd. Therefore

∑
d|n

(−1)n/dϕ(d) =
k∑

j=0

∑
c|m

(−1)2
k−jm/cϕ(2jc)

=
∑
c|m

ϕ(2k)ϕ(c)−
k−1∑
j=0

∑
c|m

ϕ(2j)ϕ(c)

=
∑
c|m

(2k − 2k−1)ϕ(c)−
k−1∑
j=1

∑
c|m

(2j − 2j−1)ϕ(c)−
∑
k|m

ϕ(c)

= (2k − 2k−1)
∑
c|m

ϕ(c)−
k−1∑
j=1

(2j − 2j−1)
∑
c|m

ϕ(c)−
∑
k|m

ϕ(c)

= (2k − 2k−1)ϕ(m)−
k−1∑
j=1

(2j − 2j−1)ϕ(m)− ϕ(m)

= ϕ(m)(2k − 2k−1 −
k−1∑
j=1

(2j − 2j−1)− 1)

= ϕ(m)(2k − 2k−1 − 2k−1)

= 0.

3.2.10 We apply the binomial theorem

(a+ b)p = ap +

(
p

1

)
ap−1b+

(
p

2

)
ap−2b2 +

(
p

3

)
ap−3b3 + · · ·+

(
p

p− 1

)
abp−1 + bp

≡ ap + bp mod p.

Here we used the fact that(
p

i

)
=

p!

i!(p− 1)!

is a natural number divisible by p, as neither i! nor (p− i)! are divisible
by p.
It follows that

(a1 + a2 + a3 + · · ·+ an)p ≡ ap1 + ap2 + · · ·+ apn mod p
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by induction on n. In particular

np = (1 + 1 + 1 + · · ·+ 1)p

≡ 1p + 1p + · · ·+ 1p mod p

= 1 + 1 + 1 + · · ·+ 1

= n.

3.2.12 If m = 1 then d = 1 and in this case

ϕ(ab) = ϕ(a)ϕ(b)

=
dϕ(a)ϕ(b)

φ(d)
.

By symmetry we are also done if n = 1. Thus we may assume that
m > 1 and n > 1. Suppose that

m = pe11 p
e2
2 . . . petn and n = pf11 p

f2
2 . . . pftn

are the prime factorisations of m and n. It follows that the prime
factorisation of d is

n = pg11 p
g2
2 . . . pgtt

where gi = min(ei, fi). In this case

ϕ(m) = (pe11 − pe1−11 )(pe22 − pe2−12 ) . . . (pett − pet−1t )

ϕ(n) = (pf11 − p
f1−1
1 )(pf22 − p

f2−1
2 ) . . . (pftt − p

ft−1
t )

ϕ(d) = (pg11 − p
g1−1
1 )(pg22 − p

g2−1
2 ) . . . (pgtt − p

gt−1
t ),

where all products only run over the primes with non-zero indices.
Since we can prove this formula prime by prime, we may assume that
m = pe and n = pf where p is a prime and e and f are natural numbers.
Possibly switching m and n we may assume that e ≤ f . In this case
d = pe and we have

dϕ(a)ϕ(b)

φ(d)
=
pe(pe − pe−1)(pf − pf−1)

(pe − pe−1)
= pe(pf − pf−1)
= pe+f − pe+f−1

= ϕ(ab).

3.2.14 Suppose that
n = pe11 p

e2
2 . . . petn

is the prime factorisation of n. It follows that the prime factorisation
of d is

d = pf11 p
f2
2 . . . pftt
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where fi ≤ ei. We have

ϕ(n) = (pe11 − pe1−11 )(pe22 − pe2−12 ) . . . (pett − pet−1t )

ϕ(d) = (pf11 − p
f1−1
1 )(pf22 − p

f2−1
2 ) . . . (pftt − p

ft−1
t ).

Therefore it suffices to observe that if p is a prime and f ≤ e are natural
numbers then pf − pf−1 = pf−1(p− 1) divides pe−1 − pe = pe−1(p− 1).
3.2.23 We first find the prime factorisation of 561,

561 = 3 · 187

= 3 · 11 · 17.

It follows that

a2 ≡ 1 mod 3 a10 ≡ 1 mod 11 and a16 ≡ 1 mod 17.

Note that 2, 10 and 16 all divide 24 · 5 = 80. Thus

a80 ≡ 1 mod 3 a80 ≡ 1 mod 11 and a80 ≡ 1 mod 17.

It follows that a80 − 1 is divisible by 3, 11 and 17. As these numbers
are coprime, it follows that a80−1 is divisible by 3 ·11 ·17 = 561. Thus

a80 ≡ 1 mod 561.

As 560 = 7 · 80, it follows that

a560 = (a80)7

≡ 17 mod 561

= 1.

Suppose that m is not square free. Then there is a prime p such that
p2 divides m. We may write m = pel, where e > 1 and l is coprime to
p. Consider

a = lpe−1 + 1.

We have

ap = (lpe−1 − 1)p

= (lpe−1)p +

(
p

1

)
(lpe−1)p−1 + · · ·+

(
p

1

)
(lpe−1) + 1p

≡ 1 mod m.

Thus a has order p.
Suppose that

am−1 ≡ 1 mod m.
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Multiplying both sides by a we get

a ≡ am mod m

= (ap)lp
e−1

≡ (1)lp
e−1

mod m

= 1.

Thus a ≡ 1 mod m, which is absurd.
Thus am−1 is not equivalent, modulo m, to one.
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