
MODEL ANSWERS TO THE FOURTH HOMEWORK

2.1.5. Note that (a, b) divides a and b so that it divides a and bc, that
is, (a, b) is a common divisor of a and bc. Thus (a, b) divides (a, bc). By
symmetry, (a, c) divides (a, bc). On the other hand, (a, b) divides b and
(a, c) divides c so that (a, b) and (a, c) are coprime. Thus (a, b)(a, c)
divides (a, bc).
Since (a, bc) divides bc, we may write (a, bc) = d1d2, where d1 divides b
and d2 divides c. Then d1 divides d1d2, which divides a. Thus d1 divides
a and it divides b so that it is a common divisor of a and b. Thus d1
divides (a, b). By symmetry d2 divides (a, c). Thus (a, bc) = d1d2
divides (a, b)(a, c). As (a, bc) = d1d2 divides (a, b)(a, c) and vice-versa,
it follows that (a, bc) = (a, b)(a, c), as both sides are natural numbers.
Suppose that a = bx + cy. Now if d divides a and b then d certainly
divides a = bx + cy and b. Vice-versa, if d divides b and bx + cy then
d divides cy. As d divides b and (b, c) = 1, it follows that d divides y.
Thus the common divisors of {a, b} and {b, y} are the same, so that
(a, b) = (b, y). By symmetry, it follows that (a, c) = (c, x).
By what we already proved,

(bx + cy, bc) = (a, bc)

= (a, b)(a, c)

= (b, y)(c, x).

2.2.6. Let

u = 3 +
√

10.

Note that if we put

v =
√

10− 3

then

uv = (
√

10 + 3)(
√

10− 3)

= (
√

10)2 − 32

= 10− 9

= 1.

1



Thus u is a unit, with inverse v. But then

unvn = (uv)n

= 1n

= 1.

It follows that un is a unit for all natural numbers n. In this case

un = v−n,

so that u−n ∈ Z[
√

10] for all natural numbers n. From there is follows
easily that un is a unit for all integers n.
2.3.5. Since (a, b) = 1 the linear Diophantine equation

ax + by = c

has infinitely many integral solutions. The two intercepts are (c/a, 0)
and (0, a/b) and the distance between these points is√( c

a

)2
+
(c
b

)2
=

c

ab

√
a2 + b2.

Now the distance between two successive solutions is
√
a2 + b2.

The distance between n solutions is then

(n− 1)
√
a2 + b2,

and this must be at most the distance between the intercepts. Thus

(n− 1)
√
a2 + b2 ≤ c

ab

√
a2 + b2,

so that cancelling and moving the one over, we get

n ≤ c

ab
+ 1.

On the other hand, amongst all solutions let (a0, b0) be the solution
with the largest negative value for a0 and let (an+1, bn+1) be the solution
with the largest negative value for bn+1. Then the n solutions in the
first quadrant are the only solutions between these two solutions. The
distance between (a0, b0) and (an+1, bn+1) is then

(n + 1)
√
a2 + b2,

and this must be greater than the distance between the intercepts.
Thus

(n + 1)
√
a2 + b2 ≤ c

ab

√
a2 + b2,
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so that cancelling and moving the one over, we get

n >
c

ab
− 1.

3.1.1. Suppose that the consecutive integers are a, a+ 1, . . . , a+ r−1.
Then the difference between any of these integers is at most r − 1, so
that these none of these r integers are congruent. As there are exactly
r congruence classes, it follows that any integer is congruent to exactly
one of these r numbers. By assumption f(a + i) is divisible by r, for
any 0 ≤ i ≤ r − 1, so that f(a + i) ≡ 0 mod r.
Suppose that b ∈ Z is an integer. Then b ≡ a + i mod r, for some
0 ≤ i ≤ r− 1. We check below that f(a+ i) ≡ f(b) mod r. Assuming
this, we have

f(b) ≡ f(a + i) mod r

= 0 mod r,

so that f(b) is divisible by r.
Note that f(x) = x2 + x is always even, since both

f(0) = 02 + 0 = 0 and f(1) = 12 + 1 = 2,

are even. The coefficients of x2+x are 1 and 0 and the greatest common
divisor is 1, which is not divisbile by 2.
Suppose that a and b are two integers, which are congruent modulo r.
We check that f(a) ≡ f(b) mod r. We proceed by induction on n in
the expression

f(x) = a0 + a1x + a2x
2 + · · ·+ anx

n.

Let

g(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1 and h(x) = anx
n.

Then f(x) = g(x) + h(x). Suppose that we know h(a) ≡ h(b) mod r.
By induction on n we would have g(a) ≡ g(b) mod r. But then

f(a) = g(a) + h(a)

≡ g(b) + h(b) mod r

= f(b).

Therefore it suffices to check that h(a) = h(b) mod r. Let k(x) = xn.
Note that if k(a) ≡ k(b) mod r then

h(a) = ana
n

≡ anb
n mod r

h(b).
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Therefore it suffices to check that k(a) = k(b) mod r. We proceed by
induction on n. Assume the result for lower values of n. We have

k(a) = an

= a · an−1

≡ b · bn−1 mod r

= bn

= k(b).

This completes the induction and the proof. In short, f(a) ≡ f(b)
mod r, as equivalence modulo r respects addition and multiplication
and a polynomial is built up using just these two operations.
3.1.2. Suppose a is an integer. If we write a in decimal then we get

a =
∑

ai10i.

where a1, a2, . . . , an are digits, so that ai are integers between 0 and 9.
Let

f(x) = a0 + a1x + a2x
2 + · · ·+ anx

n.

Then

a = f(10).

If we work modulo 9 we get we have

10 ≡ 1 mod 9,

so that

a ≡ f(1) mod 10

= a0 + a1 + · · ·+ an.

So throwing out nines just means that if we work modulo 9, we are
just adding the digits and working modulo 9 respects addition and
multiplication.
3.1.7. As r and s are odd we can find a and b such that r = 2a+ 1 and
s = 2b + 1.
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(a) We have

rs− 1

2
=

(2a + 1)(2b + 1)− 1

2

=
4ab + 2a + 2b + 1− 1

2
= 2ab + a + b

≡ a + b mod 2

=
r − 1

2
+

s− 1

2
.

Thus
rs− 1

2
≡ r − 1

2
+

s− 1

2
mod 2.

(b) Now one of a or a + 1 is even, so that a(a + 1) is always divisible
by 2 and 4a(a + 1) is always divisible by 8. Thus, we have

r2 = (2a + 1)2

= 4a2 + 4a + 1

= 4a(a + 1) + 1

≡ 1 mod 8.

(c) As a2 + a is always divisible by 2 it follows that 2(a2 + a)(b2 + b) is
divisible by 8. Thus

(rs)2 − 1

8
=

(2a + 1)2(2b + 1)2 − 1

8

=
(4a2 + 4a + 1)(4b2 + 4b + 1)− 1

8

=
4a2 + 4a

8
+

4b2 + 4b

8
+ 2(a2 + a)(b2 + b)

≡ r2 − 1

8
+

s2 − 1

8
mod 8.

3.1.8. Let n be an integer. Suppose that n is even and n is prime.
Then n = ±2. If n = −2 then n = 0 which is not prime. If n = 2 then
n+ 2 = 4 which is not prime. Thus if n and n+ 2 are both prime then
n is odd.
Suppose that n is odd. As [0], [2] and [4] = [1] are distinct equivalence
classes, modulo 3, it follows that one of n, n+ 2 and n+ 4 is congruent
to zero modulo three, so that one of them is divisible by 3. Thus if all
three of n, n + 2 and n + 4 are prime, then one of n, n + 2, n + 4 is
equal to ±3. Since this gives only finitely many possible values for n,
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it follows that the set

{n ∈ Z |n, n + 2 and n + 4 are all prime }
is finite.
3.1.10. First note that

k + 3 ≡ k mod 3.

On the other hand, working modulo three, we have

[0]3 = [03] = 0 [1]3 = [13] = [1] and [2]3 = [23] = [8] = [2].

Thus

[0]6 = 0 [1]6 = [1] and [2]6 = ([2]3)2 = [2]2 = [4] = [1].

Thus

(k + 6)k+6 ≡ kk+6 mod 3

= k6 · kk

≡ kk mod 3.

Thus the sequence kk mod 3 repeats itself every sixth integer. There-
fore the period is a divisor of six. Consider the first few terms

00 = 0 11 = 1 22 = 4 ≡ 1 mod 3 and 33 = 27 ≡ 0 mod 3.

This sequence does not repeat itself every second term but the third
term is a repeat. Therefore the period is either 3 or 6. But

55 ≡ 25 mod 3

= 23 · 22

≡ 2 · 22 mod 3

≡ 2 mod 3.

Thus the period is six.
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