MODEL ANSWERS TO THE FOURTH HOMEWORK

2.1.5. Note that (a,b) divides a and b so that it divides a and bc, that
is, (a, b) is a common divisor of a and be. Thus (a, b) divides (a, bc). By
symmetry, (a,c) divides (a, bc). On the other hand, (a, b) divides b and
(a,c) divides ¢ so that (a,b) and (a,c) are coprime. Thus (a,b)(a,c)
divides (a, bc).

Since (a, be) divides be, we may write (a, bc) = dyds, where d; divides b
and dy divides ¢. Then d; divides d;d>, which divides a. Thus d; divides
a and it divides b so that it is a common divisor of a and b. Thus d;
divides (a,b). By symmetry dy divides (a,c). Thus (a,bc) = dids
divides (a,b)(a,c). As (a,bc) = dyds divides (a,b)(a, c) and vice-versa,
it follows that (a, bc) = (a,b)(a, ¢), as both sides are natural numbers.
Suppose that a = bz + cy. Now if d divides a and b then d certainly
divides a = bx 4 cy and b. Vice-versa, if d divides b and bx + cy then
d divides cy. As d divides b and (b, c) = 1, it follows that d divides y.
Thus the common divisors of {a,b} and {b,y} are the same, so that
(a,b) = (b,y). By symmetry, it follows that (a,c) = (¢, z).

By what we already proved,

(bx + cy, bc) = (a, be)

2.2.6. Let
Note that if we put

then



Thus w is a unit, with inverse v. But then
u"v" = (uv)"

— 1"

= 1.

It follows that u™ is a unit for all natural numbers n. In this case

UT'L — U—TL’

so that =" € Z[V/10] for all natural numbers n. From there is follows
easily that u™ is a unit for all integers n.
2.3.5. Since (a,b) = 1 the linear Diophantine equation

ar +by =c

has infinitely many integral solutions. The two intercepts are (c/a,0)
and (0,a/b) and the distance between these points is

O+ @ -

Now the distance between two successive solutions is
Va2 + b2,
The distance between n solutions is then
(n —1)Va2 + b2,
and this must be at most the distance between the intercepts. Thus
(n— W+ <~V P
so that cancelling and moving the one over, we get

<=4
n < o + 1.
On the other hand, amongst all solutions let (ag,by) be the solution
with the largest negative value for ag and let (a1, b,11) be the solution
with the largest negative value for b,,;. Then the n solutions in the
first quadrant are the only solutions between these two solutions. The
distance between (ag, bg) and (@41, b,y1) is then

(n+ 1)va? + b2,
and this must be greater than the distance between the intercepts.

Thus

n+1 a2+62§£\/a2+b2,
( b

a
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so that cancelling and moving the one over, we get

c
n>——1.
ab
3.1.1. Suppose that the consecutive integers are a, a+1, ..., a+r—1.

Then the difference between any of these integers is at most r — 1, so
that these none of these r integers are congruent. As there are exactly
r congruence classes, it follows that any integer is congruent to exactly
one of these  numbers. By assumption f(a + i) is divisible by r, for
any 0 <1i <r—1,sothat f(a+1i) =0 mod r.

Suppose that b € Z is an integer. Then b = a + ¢ mod r, for some
0 <i <r—1. We check below that f(a+17) = f(b) mod r. Assuming
this, we have

f(b) = f(a+1i) modr
=0 mod r,
so that f(b) is divisible by 7.
Note that f(x) = z? 4+ x is always even, since both
f(0)=0°40=0 and f(1)=1>+1=2,

are even. The coefficients of 22+ are 1 and 0 and the greatest common
divisor is 1, which is not divisbile by 2.
Suppose that a and b are two integers, which are congruent modulo r.
We check that f(a) = f(b) mod r. We proceed by induction on n in
the expression

f() = ap + 17 + agz® + - + a, 2"

Let

9(z) = ap + a1 + asx® + -+ + a2 and h(z) = ana”.

Then f(z) = g(z) + h(x). Suppose that we know h(a) = h(b) mod r.
By induction on n we would have g(a) = g(b) mod r. But then
f(a) = g(a) + h(a)
= g(b) + h(b) mod r
= f(b).

Therefore it suffices to check that h(a) = h(b) mod r. Let k(x) = z™.
Note that if k(a) = k(b) mod r then

h(a) = aa™
=a,b" modr

h(b).



Therefore it suffices to check that k(a) = k(b) mod r. We proceed by
induction on n. Assume the result for lower values of n. We have

—
= (b).

This completes the induction and the proof. In short, f(a) = f(b)
mod r, as equivalence modulo r respects addition and multiplication
and a polynomial is built up using just these two operations.

3.1.2. Suppose a is an integer. If we write a in decimal then we get

a= Z a; 10"

where aq, as, ..., a, are digits, so that a; are integers between 0 and 9.
Let

f(z) = ao + a1x + agx® + - - - + a,a".
Then
a = f(10).

If we work modulo 9 we get we have
10=1 mod 9,
so that

a= f(1) mod 10
:a0+a1+-~~—|—an.

So throwing out nines just means that if we work modulo 9, we are
just adding the digits and working modulo 9 respects addition and
multiplication.

3.1.7. As r and s are odd we can find a and b such that r = 2a+ 1 and

s=2b-+1.
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(a) We have
rs—1  (2a+1)(20+1)—1

2 2
_4ab+2a+2b—|—1—1

2
=2ab+a+b
=a+b mod 2
r—1 s—1

2 * 2

Thus
rs—1 r—1 s—1

2 2 * 2
(b) Now one of a or a + 1 is even, so that a(a + 1) is always divisible
by 2 and 4a(a + 1) is always divisible by 8. Thus, we have
r* = (2a +1)*
= 4a® +4da + 1
=dala+1)+1
=1 mod 8.

mod 2.

(c) As a® + a is always divisible by 2 it follows that 2(a? + a)(b* + b) is
divisible by 8. Thus

(rs)> —1 _ (2a+1)%(2b+ 1) — 1

8 8
 (4a®+4a+1)(40° +4b+1) -1
- 8
4a® +4a 46> + 4b
_ a; ° 4 ; +2(a® + a)(b? + b)

1
=3 + 3 mod 8.

3.1.8. Let n be an integer. Suppose that n is even and n is prime.
Then n = +2. If n = —2 then n = 0 which is not prime. If n = 2 then
n + 2 = 4 which is not prime. Thus if n and n + 2 are both prime then
n is odd.

Suppose that n is odd. As [0], [2] and [4] = [1] are distinct equivalence
classes, modulo 3, it follows that one of n, n+2 and n + 4 is congruent
to zero modulo three, so that one of them is divisible by 3. Thus if all
three of n, n + 2 and n + 4 are prime, then one of n, n + 2, n 4+ 4 is

equal to £3. Since this gives only finitely many possible values for n,
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it follows that the set
{n€Z|n,n+2 and n+ 4 are all prime }

is finite.
3.1.10. First note that

k+3=%k mod 3.
On the other hand, working modulo three, we have
P =[0*=0 [OPF=[0%=0 and [2P=[2"]=[8 = 2.
Thus
0P=0 [P=0] and 2= (2P =[2P=[ =[]
Thus
(k+6)F0 = kF¢ mod 3
— 6k
=k* mod 3.

Thus the sequence k¥ mod 3 repeats itself every sixth integer. There-
fore the period is a divisor of six. Consider the first few terms

0°=0 1'=1 22=4=1 mod3 and 33 =27=0 mod 3.

This sequence does not repeat itself every second term but the third
term is a repeat. Therefore the period is either 3 or 6. But

5 =2 mod 3
=2%.2?
=2.22 mod3
=2 mod 3.

Thus the period is six.



