
MODEL ANSWERS TO THE THIRD HOMEWORK

2.2.1. It is convenient to use polar coordinates. Every complex number
α = x+ iy has an expression of the form

α = reiθ

where r is the distance to the origin and θ is the angle the line, con-
necting the origin to (x, y), makes with the x-axis. In this case

s(α) = r2.

Suppose that we are given two Gaussian integers

α = a+ ib = reiθ and β = c+ id = seiφ.

Then

αβ = (reiθ)(seiφ)

= (rs)ei(θ+φ).

Thus

s(αβ) = r2s2

= s(α)s2

≥ s(α),

with equality if and only if s(β) = 1. But s(β) = 1 implies c2 + d2 = 1
so that c = ±1 and d = 0 or c = 0 and d = ±1. In this case

β = ±1 or β = ±i,
is a unit.
2.2.3. We may suppose that m > 0. Suppose that m = ab where both
a > 1 and b > 1 and a ≤ b. Then

m = ab

> a2,

so that a ≤
√
m. Thus if m is not prime it has a divisor 1 < d ≤

√
m.

The Gaussian integers α such that s(α) = 1 are precisely the units. If
α = a+ bi is a Gaussian integer then s(α) = a2 + b2. Thus the possible
values of 1 < s(α) ≤ 9 are 2 = 12 + 12, 4 = 22 + 02, 5 = 22 + 12,
8 = 22 + 22 and 9 = 32 + 02. On the other hand, if α is a non-zero
Gaussian integer, then we can always find a unit u such that uα = c+di
lies in the first quadrant, so that c > 0 and d ≥ 0.
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If s(α) = 2 then a = ±1 and b = ±1. Multiplying by a unit our first
prime is p1 = 1 + i. (1 + i)(1− i) = 2, so 2 is not prime and neither is
2 + 2i = 2(1 + i).
If s(α) = 4 then a = ±2 and b = 0 or vice-versa. We have already
seen that 2 is not a prime. If s(α) = 5 then a = ±2 and b = ±1 or
vice-versa. This gives us eight possibilities. Of those eight possibilities,
two lie in the first quadrant, 2 + i and 1 + 2i. These are the second
p2 = 2 + i and third p3 = 1 + 2i primes up to units. The product of
p1 with p2 or p3 has norm squared bigger than nine. If s(α) = 8 then
a = ±2 and b = ±2. We have already seen that this is not prime.
Finally suppose that s(α) = 9 then a = ±3 and b = 0 or vice-versa.
This gives one new prime, up to units, p4 = 3.
Thus there are four primes α, 2, 2 + i, 1 + 2i and 3, up to units, such
that s(α) ≤ 9.
2.2.5. (a) Suppose that f(x) ∈ Z[x] divides both 2 and x. As f(x)
divides 2 it must be a constant. Thus f(x) = a ∈ Z is an integer. As
this integer divides 2, f(x) = ±1 or f(x) = ±2. It is easy to see that
±2 does not divide x. Thus the only common divisors of 2 and x are
±1 and so the greatest common divisor is 1.
(b) If Z[x] were a Euclidean domain then we could find polynomials
p(x) and q(x) ∈ Z[x] such that

1 = 2p(x) + xq(x).

As the constant term of xq(x) is zero and the constant term of 2p(x)
is even, it follows that the constant term of the RHS is even, a contra-
diction.
2.2.9. Let

p(n) = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
.

Let k be the largest integer such that 2k ≤ n. Note that no other
natural number between 1 and n is divisible by 2k. Thus if we multiply
both sides by 2k−1 every term

2k−1

i
for 1 ≤ i ≤ n, i 6= 2k,

of the sum is odd.
As the sum of rational numbers with an odd denominator, has an odd
denominator, it follows that 2k−1p(n) is a sum of 1/2 and a rational
number an with odd denominator. In particular p(n) is not an integer.
2.3.1. We find the greatest common divisor of 2072 and 1813. First we
divide 1813 into 2072. We have

2072 = 1 · 1813 + 259,
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so that the quotient is 1 and the remainder is 259. Now we divide 259
into 1813. We have

1813 = 7 · 259.

so that the quotient is 7 and the remainder is 0. Thus the greatest
common divisor is 259.
Note that

2589 = 11 · 259,

so that we can solve these equations.
Note that

2072− 1813 = 259.

Multiplying through by 7 gives a solution to the equation

2072x+ 1813y = 2849

Thus the general solution is

x = 1813k + 7 and y = −(2072k + 7).

2.3.3 Note that
1 = 1 · 20− 1 · 19.

Thus
1909 = 1909 · 20− 1909 · 19.

We are free to subtract 19k · 20 from the first sum and add 20k · 19
from the second sum. Thus the general solution to the equation

19x+ 20y = 1909 is x = −1909 + 20k, y = 1909− 19k.

If we want the first term to be positive we want

20k > 1909,

so that k ≥ 96. If we want the second term to be positive we want

19k < 1909,

so that k ≤ 100. The five solutions that lie in the interior of the first
quadrant are

(x, y) = (11, 85) (31, 66) (51, 47) (71, 28) (91, 9).

2.3.7 We already know that the sum

by + cz

takes on any multiple of (b, c). Thus

by + cz = (b, c)α,

for some integer α. It follows that a solution of the equation

ax+ by + cz = d
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is the same as a solution of the pair of equations

ax+ (b, c)u = d

by + cz = (b, c).

The general solution to the second equation is

y = y0 +
c

(b, c)
s and

where s ∈ Z is any integer. Observe that

(a, b, c) = (a, (b, c)).

Therefore the general solution to the first equation is

x = x0 +
(b, c)

(a, b, c)
t and u = u0 −

a

(a, b, c)
t.

Thus the general solution to the equation

ax+ by + cz = d

is

x = x0 +
(b, c)

(a, b, c)
t

y = y0u0 −
ay0

(a, b, c)
t+

c

(b, c)
s

z = z0 −
az0

(a, b, c)
t− b

(b, c)
s.

2.4.1 We first find the greatest common divisor. We have

231896 = 1 · 198061 + 33835

198061 = 5 · 33835 + 28886

33835 = 1 · 28886 + 4949

28886 = 5 · 4949 + 4141

4949 = 1 · 4141 + 808

4141 = 5 · 808 + 101

808 = 8 · 101.

Thus the greatest common divisor is 101. It follows that

[198061, 231896] =
198061 ∗ 231896

101
= 454748056.

2.4.2 Suppose that (a, b) = d and [a, b] = m. As d|a and a|m it follows
that d|m.

4



Now suppose that d|m. Let a = d and b = m. Then d|a and d|m and
so it clear that (a, b) = d. Similarly a|m and b|m and so it is clear that
[a, b] = m.
2.4.3. (a) We may assume that y ≥ z. In this case

max(y, z) = y.

Thus the LHS is
min(x, y).

There are two cases. If x ≤ y then the LHS is x.
In this case

min(x, y) = x and min(x, z) = x.

Thus the RHS is also x.
Otherwise x > y. In this case the LHS is y and

min(x, y) = y and min(x, z) = z.

Thus the RHS is
max(y, z) = y,

as well. Either way we have equality.
(b) We may find common prime factorisations

a = pe11 p
e2
2 . . . pell b = pf11 p

f2
2 . . . pfll and c = pg11 p

g2
2 . . . pgll .

We can compute the LHS and the RHS prime by prime. The exponent
of pi on the LHS is

min(ei,max(fi, gi))

and the exponent of pi on the RHS is

max(min(ei, fi),min(ei, gi)).

As these are equal, we have

(a, [b, c]) = ([a, b], [c, d]).

(c) Note first that

max(x,min(y, z)) = −min(−x,max(−y,−z))

= −max(min(−x,−y),min(−x,−z))

= min(max(x, y),min(x, z)).

We check that
[a, (b, c)] = ([a, b], [a.c]).

We pick common factorisations into primes, as in (b) and check this
result prime by prime. The exponent of pi on the LHS is

max(ei,min(fi, gi))
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and the exponent of pi on the RHS is

min(max(ei, fi),max(ei, gi)).

As these are equal, we have

[a, (b, c)] = ([a, b], [a.c]).

Let a = b = 1 and c = 0. Then

a+ bc = 1 + 0 = 1 and (a+ b)(a+ c) = (1 + 1)(1 + 0) = 2 6= 1.

Thus
a+ bc 6= (a+ b)(a+ c).
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