
MODEL ANSWERS TO THE SECOND HOMEWORK

1.2.1 Let c = a−1 · a. We compute

c · c = (a−1 · a) · (a−1 · a)

= a−1 · (a · a−1) · a
= (a−1 · e) · a
= a−1 · a
= c.

As c ∈ G it follows that c · c−1 = e. Multiplying the equation c2 = c on
the left by c−1 we get

e = c · c−1

= c2 · c−1

= c · (c · c−1)
= c · e
= c.

Thus c = e. It follows that a−1 · a = e, so that e is unique. Finally we
compute

e · a = (a · a−1) · a
= a · (a−1 · a)

= a · e
= a.

Thus G is indeed a group.
1.2.4. The even integers are a group. They are closed under addition
and inverses. They are not a ring, since 1 is not an even integer. The
positive integers is not even a group as it does not contain an identity.
1.2.5. Suppose that we can cancel. Suppose that ab = 0 and a 6= 0. As
a · 0 = 0 we have

ab = a · 0.
Cancelling a we get

b = 0.

Now suppose that ab = 0 implies either that a = 0 or b = 0.
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Suppose that

ab = ac

and a 6= 0. Then

a(b− c) = ab− ac
= 0.

As a 6= 0, it follows that b− c = 0, so that b = c.
1.4.10 If

a = pe11 p
e2
2 . . . pell

then the natual number b divides a if it has a prime factorisation of
the form

b = pf11 p
f2
2 . . . pfll

where 0 ≤ fi ≤ ei. For each index i there are ei + 1 choices of fi and so

τ(a) =
l∏

i=1

(ei + 1).

It is clear that τ(a) only depends on the set

{ ei | 1 ≤ i ≤ l }.

τ(a) is odd if and only if all of the exponents ei are even.
If m and n are coprime then

τ(mn) = τ(m)τ(n).

Suppose that m and n are coprime. We first check that

σ(mn) = σ(m)σ(n).

Note that if d divides mn then we can write d = d1d2 where d1 divides
m and d2 divides n. Thus

σ(m)σ(n) = (
∑
d1|m

d1)(σd2|n)

=
∑

d1|m,d2|n

d1d2

=
∑
d|mn

d

= σ(mn).

On the other hand, the divisors of pe are 1, p, . . . , pe, so that

σ(pe) = 1 + p+ p2 + · · ·+ pe.
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It follows that

σ(a) =
l∏

i=1

(1 + pi + p2i + · · ·+ peii ).

1.4.13 There are two possible interpretations of this problem. In the
first interpretation, k ranges over the non-negative integers and in the
second interpretation k ranges over all of the integers. Let the range
of k be I (the choice of I only changes the last bit of the problem).
The set

S = { 6k + 1 | k ∈ I },
is closed under multiplication, as

(6a+ 1)(6b+ 1) = 36ab+ 6a+ 6b+ 1

= 6(6ab+ a+ b) + 1.

1 = 6 · 0 + 1 ∈ S. S satisfies the cancellation law as the integers satisfy
the cancellation law.
We say that a ∈ S divides b ∈ S if there an element c ∈ S such that
b = ac. We say that p ∈ S is S-prime if whenever p = ab, for a and
b ∈ then either p = a or p = b.
Suppose that I is the non-negative integers. Unique factorisation does
not hold in this set. Consider the integer

5 · 5 · 11 · 11.

We can write this as

25 · 121.

Both 25 and 121 belong to S. 25 is an S-primes, as 5 does not belong
to S and 121 is an S-prime as 11 does not belong to S. Similarly we
can write the product as

55 · 55.

55 belongs to S. It is an S-prime as neither 5 nor 11 belong to S.
Thus

25 · 121 = 55 · 55,

are two distinct ways to write the same element of S as a product of
S-primes.
Now suppose that I = Z. Then unique factorisation does hold. Pick
a ∈ S. If a = 1 then there is nothing to prove. Otherwise a is a prod-
uct of ordinary primes q1, q2, . . . , qk, except where we allow negative
numbers (so that, for example, −2, −3 are considered to be primes).
If every qi ∈ S then qi = pi is an S-prime.
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Suppose that qi /∈ S. Then qi 6= 2, since then a is even and a does not
belong to S. Similarly qi 6= 3. Thus qi = 6k + 5. It follows that

−qi = 6(−k)− 5

= 6(−k − 1) + 1 ∈ S.

Suppose that qj /∈ S as well. Then we can flip the sign of both qi and
qj,

a = q1q2 . . . qi−1(−qi)qi+1 . . . qj−1(−qj)qj+1 . . . qk.

Continuing in this way, either we write a as a product of S-primes, or
exactly one of the primes q1, q2, . . . , qk does not belong to S.
The product b of the other primes does belong to S, since S is closed
under multiplication. −qi ∈ S so that −a = (−qi) · b ∈ S. But it is not
possible that both a and −a ∈ S.
2.1.1. It is clear that both 4655 and 12075 are divisible by 5. We divide
both of these numbers by 5 and calculate the greatest common divisor
of what is left. We want to calculate the greatest common divisor of
931 and 2415. It we look for other common low prime factors we see
that 7 is a common factor. If we divide through by 7 we have to find
the greatest common divisor of 133 and 345.
We first divide 133 into 345. We have

345 = 2 · 133 + 79

Thus the quotient is 2 and the remainder is 79. Now we divide 79 into
133. We have

133 = 1 · 79 + 54.

Thus the quotient is 1 and the remainder is 54. Now we divide 54 into
79. We have

79 = 1 · 54 + 25.

Thus the quotient is 1 and the remainder is 25. Now we divide 25 into
54. We have

54 = 2 · 25 + 4.

Thus the quotient is 2 and the remainder is 4. Now we divide 4 into
25. We have

25 = 6 · 4 + 1.

Thus the quotient is 6 and the remainder is 1. Now we divide 1 into
24. We have

4 = 4 · 1 + 0.

Thus the quotient is 4 and the remainder is 0. Thus the greatest
common divisor of 133 and 345 is one. It follows that the greatest
common divisor of 4655 and 12075 is 35.
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We now write 1 as a linear combination of 133 into 345. We go back-
wards. From

25 = 6 · 4 + 1 we get 1 = 25− 6 · 4.
From

54 = 2 · 25 + 4 we get 4 = 54− 2 · 25.

Thus

1 = 25− 6 · 4
= 25− 6 · (54− 2 · 25)

= 13 · 25− 6 · 54.

From
79 = 1 · 54 + 25 we get 25 = 79− 1 · 54.

Thus

1 = 13 · 25− 6 · 54

= 13 · (79− 1 · 54)− 6 · 54

= 13 · 79− 19 · 54.

From
133 = 1 · 79 + 54 we get 54 = 133− 1 · 79.

Thus

1 = 13 · 79− 19 · 54

= 13 · 79− 19 · (133− 1 · 79)

= 32 · 79− 19 · 133.

From

345 = 2 · 133 + 79 we get 79 = 345− 2 · 133.

Thus

1 = 32 · 79− 19 · 133

= 32 · (345− 2 · 133)− 19 · 133

= 32 · 345− 83 · 133.

Multiplying by 35 we get

35 = 32 · 12075− 83 · 4655.

2.1.2 Suppose that m is a natural number that divides both a + b
and a − b. Then m divides (a + b) + (a − b) = 2a and m divides
(a+ b)− (a− b) = 2b. Thus m is certainly not an odd prime. It follows
that the greatest common divisor of a − b and a + b is a power of 2.
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But m = 4 does not divide 2a and 2b so the greatest common divisor
is either 1 or 2.
If a + b is even then either a and b are both even or both odd. As a
and b are coprime they are not both even. If a and b are odd then both
a + b and a − b are even. Thus the greatest common divisor of a + b
and a− b is either 1 or 2 and it is 2 if and only if both a and b are odd.
2.1.4 We may find common prime factorisations

a = pe11 p
e2
2 . . . pell b = pf11 p

f2
2 . . . pfll and c = pg11 p

g2
2 . . . pgll .

As b and c are coprime, it follows that if figi = 0 for all i. As b|a
it follows that fi ≤ ei. As c|a it follows that gi ≤ ei. But then
fi + g + i ≤ ei, since one of fi and gi is zero. Thus

bc = pf1+g1
1 pf2+g2

2 . . . pfl+gl
l

divides a.
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